BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30346607)

  • 1. LPTK: a linguistic pattern-aware dependency tree kernel approach for the BioCreative VI CHEMPROT task.
    Warikoo N; Chang YC; Hsu WL
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30346607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting chemical-protein relations with ensembles of SVM and deep learning models.
    Peng Y; Rios A; Kavuluru R; Lu Z
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30020437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical-gene relation extraction using recursive neural network.
    Lim S; Kang J
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29961818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PIPE: a protein-protein interaction passage extraction module for BioCreative challenge.
    Chang YC; Chu CH; Su YC; Chen CC; Hsu WL
    Database (Oxford); 2016; 2016():. PubMed ID: 27524807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potent pairing: ensemble of long short-term memory networks and support vector machine for chemical-protein relation extraction.
    Mehryary F; Björne J; Salakoski T; Ginter F
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30576487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting chemical-protein interactions from literature using sentence structure analysis and feature engineering.
    Lung PY; He Z; Zhao T; Yu D; Zhang J
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30624652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting chemical-protein relations using attention-based neural networks.
    Liu S; Shen F; Komandur Elayavilli R; Wang Y; Rastegar-Mojarad M; Chaudhary V; Liu H
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30295724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the learning of chemical-protein interactions from literature using transfer learning and specialized word embeddings.
    Corbett P; Boyle J
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30010749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Graph Convolutional Network-Based Method for Chemical-Protein Interaction Extraction: Algorithm Development.
    Wang E; Wang F; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    JMIR Med Inform; 2020 May; 8(5):e17643. PubMed ID: 32348257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine.
    Islamaj Dogan R; Kim S; Chatr-Aryamontri A; Wei CH; Comeau DC; Antunes R; Matos S; Chen Q; Elangovan A; Panyam NC; Verspoor K; Liu H; Wang Y; Liu Z; Altinel B; Hüsünbeyi ZM; Özgür A; Fergadis A; Wang CK; Dai HJ; Tran T; Kavuluru R; Luo L; Steppi A; Zhang J; Qu J; Lu Z
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30689846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical-protein interaction extraction via contextualized word representations and multihead attention.
    Zhang Y; Lin H; Yang Z; Wang J; Sun Y
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31125403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of chemical-protein interactions from the literature using neural networks and narrow instance representation.
    Antunes R; Matos S
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31622463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated recognition of functional compound-protein relationships in literature.
    Döring K; Qaseem A; Becer M; Li J; Mishra P; Gao M; Kirchner P; Sauter F; Telukunta KK; Moumbock AFA; Thomas P; Günther S
    PLoS One; 2020; 15(3):e0220925. PubMed ID: 32126064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach to improve kernel-based Protein-Protein Interaction extraction by learning from large-scale network data.
    Li L; Guo R; Jiang Z; Huang D
    Methods; 2015 Jul; 83():44-50. PubMed ID: 25864936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hedge Scope Detection in Biomedical Texts: An Effective Dependency-Based Method.
    Zhou H; Deng H; Huang D; Zhu M
    PLoS One; 2015; 10(7):e0133715. PubMed ID: 26218847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tree kernel-based protein-protein interaction extraction from biomedical literature.
    Qian L; Zhou G
    J Biomed Inform; 2012 Jun; 45(3):535-43. PubMed ID: 22388011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting graph kernels for high performance biomedical relation extraction.
    Panyam NC; Verspoor K; Cohn T; Ramamohanarao K
    J Biomed Semantics; 2018 Jan; 9(1):7. PubMed ID: 29382397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gradient-descent-based approach for transparent linguistic interface generation in fuzzy models.
    Chen L; Chen CL; Pedrycz W
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1219-30. PubMed ID: 19963699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.