These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30346607)

  • 21. relSCAN - A system for extracting chemical-induced disease relation from biomedical literature.
    Onye SC; Akkeleş A; Dimililer N
    J Biomed Inform; 2018 Nov; 87():79-87. PubMed ID: 30296491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical-induced disease relation extraction with various linguistic features.
    Gu J; Qian L; Zhou G
    Database (Oxford); 2016; 2016():. PubMed ID: 27052618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical bi-directional attention-based RNNs for supporting document classification on protein-protein interactions affected by genetic mutations.
    Fergadis A; Baziotis C; Pappas D; Papageorgiou H; Potamianos A
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30137284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overview of the BioCreative III Workshop.
    Arighi CN; Lu Z; Krallinger M; Cohen KB; Wilbur WJ; Valencia A; Hirschman L; Wu CH
    BMC Bioinformatics; 2011 Oct; 12 Suppl 8(Suppl 8):S1. PubMed ID: 22151647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach.
    Rinaldi F; Schneider G; Kaljurand K; Hess M; Andronis C; Konstandi O; Persidis A
    Artif Intell Med; 2007 Feb; 39(2):127-36. PubMed ID: 17052900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linguistic decision making for robot route learning.
    He H; McGinnity TM; Coleman S; Gardiner B
    IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):203-15. PubMed ID: 24806654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving chemical disease relation extraction with rich features and weakly labeled data.
    Peng Y; Wei CH; Lu Z
    J Cheminform; 2016; 8():53. PubMed ID: 28316651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying Chemical-Disease Relationship in Biomedical Text Using a Multiple Kernel Learning-Boosting Method.
    Sun Y; Zhang Y; Li J
    Stud Health Technol Inform; 2017; 245():1288. PubMed ID: 29295373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures.
    Li L; Zhang P; Zheng T; Zhang H; Jiang Z; Huang D
    PLoS One; 2014; 9(3):e91898. PubMed ID: 24622773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linguistic feature analysis for protein interaction extraction.
    Fayruzov T; De Cock M; Cornelis C; Hoste V
    BMC Bioinformatics; 2009 Nov; 10():374. PubMed ID: 19909518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A graph kernel based on context vectors for extracting drug-drug interactions.
    Zheng W; Lin H; Zhao Z; Xu B; Zhang Y; Yang Z; Wang J
    J Biomed Inform; 2016 Jun; 61():34-43. PubMed ID: 27012903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set.
    Muzaffar AW; Azam F; Qamar U
    Comput Math Methods Med; 2015; 2015():910423. PubMed ID: 26347797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying interactions between chemical entities in biomedical text.
    Lamurias A; Ferreira JD; Couto FM
    J Integr Bioinform; 2014 Oct; 11(3):247. PubMed ID: 25339081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. k-Information gain scaled nearest neighbors: a novel approach to classifying protein-protein interaction-related documents.
    Ambert KH; Cohen AM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):305-10. PubMed ID: 21339533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks.
    Lu H; Li L; He X; Liu Y; Zhou A
    Comput Methods Programs Biomed; 2019 Jul; 176():61-68. PubMed ID: 31200912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical-protein interaction extraction via Gaussian probability distribution and external biomedical knowledge.
    Sun C; Yang Z; Su L; Wang L; Zhang Y; Lin H; Wang J
    Bioinformatics; 2020 Aug; 36(15):4323-4330. PubMed ID: 32399565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constructing and validating readability models: the method of integrating multilevel linguistic features with machine learning.
    Sung YT; Chen JL; Cha JH; Tseng HC; Chang TH; Chang KE
    Behav Res Methods; 2015 Jun; 47(2):340-54. PubMed ID: 24687843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using a shallow linguistic kernel for drug-drug interaction extraction.
    Segura-Bedmar I; Martínez P; de Pablo-Sánchez C
    J Biomed Inform; 2011 Oct; 44(5):789-804. PubMed ID: 21545845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neighborhood hash graph kernel for protein-protein interaction extraction.
    Zhang Y; Lin H; Yang Z; Li Y
    J Biomed Inform; 2011 Dec; 44(6):1086-92. PubMed ID: 21884822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.