These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30346698)

  • 1. Tunable Water Harvesting Surfaces Consisting of Biphilic Nanoscale Topography.
    Hou Y; Shang Y; Yu M; Feng C; Yu H; Yao S
    ACS Nano; 2018 Nov; 12(11):11022-11030. PubMed ID: 30346698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose-Based Superhydrophobic Surface Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate Water Harvesting.
    Huang W; Tang X; Qiu Z; Zhu W; Wang Y; Zhu YL; Xiao Z; Wang H; Liang D; Li J; Xie Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40968-40978. PubMed ID: 32805840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically Branched Siloxane Brushes for Efficient Harvesting of Atmospheric Water.
    Song J; Liu J; Li M; Li S; Kappl M; Butt HJ; Hou Y; Yeung KL
    Small; 2023 Sep; 19(37):e2301561. PubMed ID: 37096929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporation-Crystallization Method to Promote Coalescence-Induced Jumping on Superhydrophobic Surfaces.
    Han T; Choi Y; Kwon JT; Kim MH; Jo H
    Langmuir; 2020 Aug; 36(33):9843-9848. PubMed ID: 32787044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Different Are Fog Collection and Dew Water Harvesting on Surfaces with Different Wetting Behaviors?
    Nioras D; Ellinas K; Constantoudis V; Gogolides E
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48322-48332. PubMed ID: 34590815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting Applications.
    Wang Y; Zhao W; Han M; Guan L; Han L; Hemraj A; Tam KC
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202115238. PubMed ID: 34936181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities.
    Feldmann D; Pinchasik BE
    J Colloid Interface Sci; 2023 Aug; 644():146-156. PubMed ID: 37105038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Nam Y; Lopez K; Dou N; Sack J; Wang EN
    Nano Lett; 2013 Jan; 13(1):179-87. PubMed ID: 23190055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Out-of-Plane Biphilic Surface Structuring for Enhanced Capillary-Driven Dropwise Condensation.
    Stendardo L; Milionis A; Kokkoris G; Stamatopoulos C; Sharma CS; Kumar R; Donati M; Poulikakos D
    Langmuir; 2023 Jan; 39(4):1585-1592. PubMed ID: 36645348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent filmwise and dropwise condensation on a beetle mimetic surface.
    Hou Y; Yu M; Chen X; Wang Z; Yao S
    ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography.
    Hou Y; Yu M; Shang Y; Zhou P; Song R; Xu X; Chen X; Wang Z; Yao S
    Phys Rev Lett; 2018 Feb; 120(7):075902. PubMed ID: 29542940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Engineered Wettability on the Efficiency of Dew Collection.
    Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-Density-Controlled Phase-Change Phenomena.
    Hoque MJ; Yan X; Qiu H; Feng Y; Ma J; Li J; Du X; Linjawi M; Agarwala S; Miljkovic N
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36881487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal design of permeable fiber network structures for fog harvesting.
    Park KC; Chhatre SS; Srinivasan S; Cohen RE; McKinley GH
    Langmuir; 2013 Oct; 29(43):13269-77. PubMed ID: 23895249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned Hybrid Wettability Surfaces for Fog Harvesting.
    Guo Y; Li Y; Zhao G; Zhang Y; Pan G; Yu H; Zhao M; Tang G; Liu Y
    Langmuir; 2023 Apr; 39(13):4642-4650. PubMed ID: 36951792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dropwise Condensation on Multiscale Bioinspired Metallic Surfaces with Nanofeatures.
    Orejon D; Askounis A; Takata Y; Attinger D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24735-24750. PubMed ID: 31180632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.