These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. How the activity of natural enemies changes the structure and metabolism of the nutritive tissue in galls? Evidence from the Palaeomystella oligophaga (Lepidoptera) -Macairea radula (Metastomataceae) system. Rezende UC; Cardoso JCF; Kuster VC; Gonçalves LA; Oliveira DC Protoplasma; 2019 May; 256(3):669-677. PubMed ID: 30446812 [TBL] [Abstract][Full Text] [Related]
11. The imbalance of redox homeostasis in arthropod-induced plant galls: Mechanisms of stress generation and dissipation. Santos Isaias RM; Oliveira DC; Moreira AS; Soares GL; Carneiro RG Biochim Biophys Acta; 2015 Aug; 1850(8):1509-17. PubMed ID: 25813551 [TBL] [Abstract][Full Text] [Related]
12. Effect of Kot I; Sempruch C; Rubinowska K; Michałek W Bull Entomol Res; 2020 Feb; 110(1):34-43. PubMed ID: 31190653 [TBL] [Abstract][Full Text] [Related]
13. Is a Gall an Extended Phenotype of the Inducing Insect? A Comparative Study of Selected Morphological and Physiological Traits of Leaf and Stem Galls on Machilus thunbergii (Lauraceae) Induced by Five Species of Daphnephila (Diptera: Cecidomyiidae) in Northeastern Taiwan. Pan LY; Chen WN; Chiu ST; Raman A; Chiang TC; Yang MM Zoolog Sci; 2015 Jun; 32(3):314-21. PubMed ID: 26003988 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845 [TBL] [Abstract][Full Text] [Related]
15. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. Hearn J; Blaxter M; Schönrogge K; Nieves-Aldrey JL; Pujade-Villar J; Huguet E; Drezen JM; Shorthouse JD; Stone GN PLoS Genet; 2019 Nov; 15(11):e1008398. PubMed ID: 31682601 [TBL] [Abstract][Full Text] [Related]
16. High antioxidant activity of phenolic compounds dampens oxidative stress in Espinosa nothofagi galls induced on Nothofagus obliqua buds. Guedes LM; Torres S; Sáez-Carillo K; Becerra J; Pérez CI; Aguilera N Plant Sci; 2022 Jan; 314():111114. PubMed ID: 34895543 [TBL] [Abstract][Full Text] [Related]
17. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae). de Oliveira DC; Isaias RM Rev Biol Trop; 2009; 57(1-2):293-302. PubMed ID: 19637708 [TBL] [Abstract][Full Text] [Related]
18. Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? de Oliveira DC; Isaias RM; Moreira AS; Magalhães TA; de Lemos-Filho JP Plant Sci; 2011 Mar; 180(3):489-95. PubMed ID: 21421396 [TBL] [Abstract][Full Text] [Related]
19. Richness and composition of gall-inducing arthropods at Coiba National Park, Panama. Nieves-Aldrey JL; Ibáñez A; Medianero E Rev Biol Trop; 2008 Sep; 56(3):1269-86. PubMed ID: 19419044 [TBL] [Abstract][Full Text] [Related]