These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30346983)

  • 21. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    SpĆ¼ler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Frequency SSVEP Stimulation Paradigm Based On Dual Frequency Modulation
    Liang L; Yang C; Wang Y; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6184-6187. PubMed ID: 31947255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Four-Class Phase-Coded SSVEP BCI at 60Hz Using Refresh Rate.
    Jiang L; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6331-6334. PubMed ID: 31947290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting the temporal patterning of transient VEP signals: a statistical single-trial methodology with implications to brain-computer interfaces (BCIs).
    Liparas D; Dimitriadis SI; Laskaris NA; Tzelepi A; Charalambous K; Angelis L
    J Neurosci Methods; 2014 Jul; 232():189-98. PubMed ID: 24880045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An SSVEP-BCI in Augmented Reality.
    Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs
    Zheng L; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3058-3061. PubMed ID: 31946533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A BCI using VEP for continuous control of a mobile robot.
    Kapeller C; Hintermuller C; Abu-Alqumsan M; Pruckl R; Peer A; Guger C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5254-7. PubMed ID: 24110921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Spectrally-Dense Encoding Method for Designing a High-Speed SSVEP-BCI With 120 Stimuli.
    Chen X; Liu B; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2764-2772. PubMed ID: 36136927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric field encephalography for brain activity monitoring.
    Versek C; Frasca T; Zhou J; Chowdhury K; Sridhar S
    J Neural Eng; 2018 Aug; 15(4):046027. PubMed ID: 29749347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Experimental study on brain-computer interface based on visual evoked potentials].
    He Q; Peng C; Wu B; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):93-6. PubMed ID: 15022474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maximizing Information Transfer in SSVEP-Based Brain-Computer Interfaces.
    Sengelmann M; Engel AK; Maye A
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):381-394. PubMed ID: 28113192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain-computer interface based on intermodulation frequency.
    Chen X; Chen Z; Gao S; Gao X
    J Neural Eng; 2013 Dec; 10(6):066009. PubMed ID: 24140740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.