These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30347137)

  • 1. Development of an organotypic stem cell model for the study of human embryonic palatal fusion.
    Wolf CJ; Belair DG; Becker CM; Das KP; Schmid JE; Abbott BD
    Birth Defects Res; 2018 Oct; 110(17):1322-1334. PubMed ID: 30347137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Lee S; Longaker MT
    Plast Reconstr Surg; 2001 Aug; 108(2):403-10. PubMed ID: 11496182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering human cell spheroids to model embryonic tissue fusion in vitro.
    Belair DG; Wolf CJ; Wood C; Ren H; Grindstaff R; Padgett W; Swank A; MacMillan D; Fisher A; Winnik W; Abbott BD
    PLoS One; 2017; 12(9):e0184155. PubMed ID: 28898253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoic acid-induced alterations in the expression of growth factors in embryonic mouse palatal shelves.
    Abbott BD; Birnbaum LS
    Teratology; 1990 Dec; 42(6):597-610. PubMed ID: 2087681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium inhibits palatal fusion and osteogenic differentiation in palatal shelves in vitro.
    Meng L; Wang X; Torensma R; Von den Hoff JW; Bian Z
    Arch Oral Biol; 2015 Mar; 60(3):501-7. PubMed ID: 25555252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rescue of an in vitro palate nonfusion model using interposed embryonic mesenchyme.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Peled ZM; Longaker MT
    Plast Reconstr Surg; 2002 Jun; 109(7):2363-72. PubMed ID: 12045564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human embryonic palatal epithelial differentiation is altered by retinoic acid and epidermal growth factor in organ culture.
    Abbott BD; Pratt RM
    J Craniofac Genet Dev Biol; 1987; 7(3):241-65. PubMed ID: 3501432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medial epithelial seam cell migration during palatal fusion.
    Logan SM; Benson MD
    J Cell Physiol; 2020 Feb; 235(2):1417-1424. PubMed ID: 31264714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion.
    Jin JZ; Li Q; Higashi Y; Darling DS; Ding J
    Cell Tissue Res; 2008 Jul; 333(1):29-38. PubMed ID: 18470539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell behaviour and cleft palate in the mutant mouse, amputated.
    Flint OP
    J Embryol Exp Morphol; 1980 Aug; 58():131-42. PubMed ID: 7441149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed osteoprogenitor differentiation in cleft-palate models.
    Pungchanchaikul P; Bloch-Zupan A; Ferretti P
    Cells Tissues Organs; 2010; 192(5):283-91. PubMed ID: 20616530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal influences on epithelial differentiation in developing systems.
    Sharpe PM; Ferguson MW
    J Cell Sci Suppl; 1988; 10():195-230. PubMed ID: 3077937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT).
    Nawshad A; LaGamba D; Hay ED
    Arch Oral Biol; 2004 Sep; 49(9):675-89. PubMed ID: 15275855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on etiology of retinoic acid-induced cleft palate in mouse].
    Huang HZ; Lü BH; Chen YY; Liao GQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2003 May; 38(3):185-7. PubMed ID: 12887794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect.
    Dudas M; Li WY; Kim J; Yang A; Kaartinen V
    Acta Histochem; 2007; 109(1):1-14. PubMed ID: 16962647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ERK1/2 signaling during EGF-induced inhibition of palatal fusion.
    Yamamoto T; Cui XM; Shuler CF
    Dev Biol; 2003 Aug; 260(2):512-21. PubMed ID: 12921749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periderm: Life-cycle and function during orofacial and epidermal development.
    Hammond NL; Dixon J; Dixon MJ
    Semin Cell Dev Biol; 2019 Jul; 91():75-83. PubMed ID: 28803895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets.
    Lee JM; Kim HY; Park JS; Lee DJ; Zhang S; Green DW; Okano T; Hong JH; Jung HS
    J Tissue Eng Regen Med; 2019 Feb; 13(2):319-327. PubMed ID: 30644640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.
    Wu W; Gu S; Sun C; He W; Xie X; Li X; Ye W; Qin C; Chen Y; Xiao J; Liu C
    PLoS One; 2015; 10(9):e0136951. PubMed ID: 26332583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epithelial-mesenchymal interaction in palatal shelf fusion. An in vitro study.
    Goss AN; Avery JK
    Aust Dent J; 1975 Jun; 20(3):152-6. PubMed ID: 1057902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.