These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 30347381)
1. Impact of sphingomyelin acyl chain (16:0 vs 24:1) on the interfacial properties of Langmuir monolayers: A PM-IRRAS study. Vázquez RF; Daza Millone MA; Pavinatto FJ; Fanani ML; Oliveira ON; Vela ME; Maté SM Colloids Surf B Biointerfaces; 2019 Jan; 173():549-556. PubMed ID: 30347381 [TBL] [Abstract][Full Text] [Related]
2. The pesticide picloram affects biomembrane models made with Langmuir monolayers. Lemma T; Marques Ruiz GC; Oliveira ON; Constantino CJL Colloids Surf B Biointerfaces; 2019 Sep; 181():953-958. PubMed ID: 31382345 [TBL] [Abstract][Full Text] [Related]
3. Interaction of cholesterol in ternary lipid mixtures investigated using single-molecule fluorescence. DeWitt BN; Dunn RC Langmuir; 2015 Jan; 31(3):995-1004. PubMed ID: 25531175 [TBL] [Abstract][Full Text] [Related]
4. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines. Parkkila P; Stefl M; Olżyńska A; Hof M; Kinnunen PK Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):167-73. PubMed ID: 25450344 [TBL] [Abstract][Full Text] [Related]
5. The magnitude of condensation induced by cholesterol on the mixtures of sphingomyelin with phosphatidylcholines-Study on ternary and quaternary systems. Wydro P Colloids Surf B Biointerfaces; 2011 Feb; 82(2):594-601. PubMed ID: 21074382 [TBL] [Abstract][Full Text] [Related]
7. X-ray grazing incidence diffraction and Langmuir monolayer studies of the interaction of beta-cyclodextrin with model lipid membranes. Flasiński M; Broniatowski M; Majewski J; Dynarowicz-Łatka P J Colloid Interface Sci; 2010 Aug; 348(2):511-21. PubMed ID: 20493495 [TBL] [Abstract][Full Text] [Related]
8. Properties of Langmuir and solid supported lipid films with sphingomyelin. Jurak M; Golabek M; Holysz L; Chibowski E Adv Colloid Interface Sci; 2015 Aug; 222():385-97. PubMed ID: 24725646 [TBL] [Abstract][Full Text] [Related]
9. Statin Action Targets Lipid Rafts of Cell Membranes: GIXD/PM-IRRAS Investigation of Langmuir Monolayers. Zaborowska M; Broniatowski M; Fontaine P; Bilewicz R; Matyszewska D J Phys Chem B; 2023 Aug; 127(32):7135-7147. PubMed ID: 37551973 [TBL] [Abstract][Full Text] [Related]
10. Disruption of giant unilamellar vesicles mimicking cell membranes induced by the pesticides glyphosate and picloram. Lemma T; Ruiz GCM; Oliveira ON; Constantino CJL Biophys Chem; 2019 Jul; 250():106176. PubMed ID: 31055199 [TBL] [Abstract][Full Text] [Related]
11. Daunorubicin and doxorubicin molecular interplay with 2D membrane models. Alves AC; Nunes C; Lima J; Reis S Colloids Surf B Biointerfaces; 2017 Dec; 160():610-618. PubMed ID: 29028609 [TBL] [Abstract][Full Text] [Related]
12. N-nervonoylsphingomyelin (C24:1) prevents lateral heterogeneity in cholesterol-containing membranes. Maté S; Busto JV; García-Arribas AB; Sot J; Vazquez R; Herlax V; Wolf C; Bakás L; Goñi FM Biophys J; 2014 Jun; 106(12):2606-16. PubMed ID: 24940778 [TBL] [Abstract][Full Text] [Related]
13. Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation? Shaikh SR; Brzustowicz MR; Gustafson N; Stillwell W; Wassall SR Biochemistry; 2002 Aug; 41(34):10593-602. PubMed ID: 12186543 [TBL] [Abstract][Full Text] [Related]
14. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. Vezočnik V; Hodnik V; Sitar S; Okur HI; Tušek-Žnidarič M; Lütgebaucks C; Sepčić K; Kogej K; Roke S; Žagar E; Maček P Langmuir; 2018 Jul; 34(30):8983-8993. PubMed ID: 29983071 [TBL] [Abstract][Full Text] [Related]
15. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes. Tsai WC; Feigenson GW Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):478-485. PubMed ID: 30529459 [TBL] [Abstract][Full Text] [Related]
16. Sphingomyelin/phosphatidylcholine/cholesterol monolayers--analysis of the interactions in model membranes and Brewster Angle Microscopy experiments. Wydro P Colloids Surf B Biointerfaces; 2012 May; 93():174-9. PubMed ID: 22277747 [TBL] [Abstract][Full Text] [Related]
17. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Lin Q; London E Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. Tsamaloukas A; Szadkowska H; Heerklotz H Biophys J; 2006 Jun; 90(12):4479-87. PubMed ID: 16581844 [TBL] [Abstract][Full Text] [Related]
19. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462 [TBL] [Abstract][Full Text] [Related]
20. A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems. Guo W; Kurze V; Huber T; Afdhal NH; Beyer K; Hamilton JA Biophys J; 2002 Sep; 83(3):1465-78. PubMed ID: 12202372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]