These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30347404)

  • 1. Novel Neural Network Approach to Predict Drug-Target Interactions Based on Drug Side Effects and Genome-Wide Association Studies.
    Prinz J; Koohi-Moghadam M; Sun H; Kocher JA; Wang J
    Hum Hered; 2018; 83(2):79-91. PubMed ID: 30347404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling polypharmacy side effects with graph convolutional networks.
    Zitnik M; Agrawal M; Leskovec J
    Bioinformatics; 2018 Jul; 34(13):i457-i466. PubMed ID: 29949996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Side Effects Using Comprehensive Similarity Measures.
    Seo S; Lee T; Kim MH; Yoon Y
    Biomed Res Int; 2020; 2020():1357630. PubMed ID: 32190647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic.
    Fakhraei S; Huang B; Raschid L; Getoor L
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):775-87. PubMed ID: 26356852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying drug interactions using machine learning.
    Demirsoy I; Karaibrahimoglu A
    Adv Clin Exp Med; 2023 Aug; 32(8):829-838. PubMed ID: 37589227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database.
    Barneh F; Jafari M; Mirzaie M
    Brief Bioinform; 2016 Nov; 17(6):1070-1080. PubMed ID: 26490381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models.
    Jamal S; Goyal S; Shanker A; Grover A
    Sci Rep; 2017 Apr; 7(1):872. PubMed ID: 28408735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach.
    Hu B; Wang H; Wang L; Yuan W
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel integrated action crossing method for drug-drug interaction prediction in non-communicable diseases.
    Hunta S; Yooyativong T; Aunsri N
    Comput Methods Programs Biomed; 2018 Sep; 163():183-193. PubMed ID: 30119852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network.
    Hu B; Wang H; Yu Z
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-Generation Machine Learning for Biological Networks.
    Camacho DM; Collins KM; Powers RK; Costello JC; Collins JJ
    Cell; 2018 Jun; 173(7):1581-1592. PubMed ID: 29887378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug combinatorics and side effect estimation on the signed human drug-target network.
    Torres NB; Altafini C
    BMC Syst Biol; 2016 Aug; 10(1):74. PubMed ID: 27526853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ARWAR: A network approach for predicting Adverse Drug Reactions.
    Rahmani H; Weiss G; Méndez-Lucio O; Bender A
    Comput Biol Med; 2016 Jan; 68():101-8. PubMed ID: 26638149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
    Liu R; AbdulHameed MDM; Kumar K; Yu X; Wallqvist A; Reifman J
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):44. PubMed ID: 28595649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of a microfluidic multicellular coculture array with machine learning analysis to predict adverse cutaneous drug reactions.
    Chong LH; Ching T; Farm HJ; Grenci G; Chiam KH; Toh YC
    Lab Chip; 2022 May; 22(10):1890-1904. PubMed ID: 35348137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhID: An Open-Access Integrated Pharmacology Interactions Database for Drugs, Targets, Diseases, Genes, Side-Effects, and Pathways.
    Deng Z; Tu W; Deng Z; Hu QN
    J Chem Inf Model; 2017 Oct; 57(10):2395-2400. PubMed ID: 28906116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GraphSAW: a web-based system for graphical analysis of drug interactions and side effects using pharmaceutical and molecular data.
    Shoshi A; Hoppe T; Kormeier B; Ogultarhan V; Hofestädt R
    BMC Med Inform Decis Mak; 2015 Feb; 15():15. PubMed ID: 25881043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.