BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30347754)

  • 1. Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack.
    Liu H; Tan J; Liu P; Bian LA; Zha S
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation study on active control of electromagnetically induced transparency analogue in coupled photonic crystal nanobeam cavity-waveguide systems integrated with graphene.
    Jiang F; Deng CS; Lin Q; Wang LL
    Opt Express; 2019 Oct; 27(22):32122-32134. PubMed ID: 31684430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled-resonator-induced reflection in photonic-crystal waveguide structures.
    Mingaleev SF; Miroshnichenko AE; Kivshar YS
    Opt Express; 2008 Jul; 16(15):11647-59. PubMed ID: 18648486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflectionless dual standing-wave microcavity resonator units for photonic integrated circuits.
    Al Qubaisi K; Popović MA
    Opt Express; 2020 Nov; 28(24):35986-35996. PubMed ID: 33379703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems.
    Zhou J; Mu D; Yang J; Han W; Di X
    Opt Express; 2011 Mar; 19(6):4856-61. PubMed ID: 21445121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities.
    Guo J
    Appl Opt; 2014 Mar; 53(8):1604-9. PubMed ID: 24663417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures.
    Mingaleev SF; Miroshnichenko AE; Kivshar YS; Busch K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046603. PubMed ID: 17155188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications.
    Sun J; Maeno K; Aki S; Sueyoshi K; Hisamoto H; Endo T
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate.
    Han X; Wang T; Li X; Xiao S; Zhu Y
    Opt Express; 2015 Dec; 23(25):31945-55. PubMed ID: 26698986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Bragg defect mode in one-dimensional photonic crystal containing a graphene-embedded defect layer.
    Mahmoodzadeh H; Rezaei B
    Appl Opt; 2018 Mar; 57(9):2172-2176. PubMed ID: 29604007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides.
    Varmazyari V; Habibiyan H; Ghafoorifard H
    Appl Opt; 2013 Sep; 52(26):6497-505. PubMed ID: 24085125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface.
    Ma Q; Dai J; Luo A; Hong W
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities.
    Chew X; Zhou G; Chau FS; Deng J; Tang X; Loke YC
    Opt Lett; 2010 Aug; 35(15):2517-9. PubMed ID: 20680043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamically Tunable Plasmon-Induced Transparency in On-chip Graphene-Based Asymmetrical Nanocavity-Coupled Waveguide System.
    Qiu P; Qiu W; Lin Z; Chen H; Ren J; Wang JX; Kan Q; Pan JQ
    Nanoscale Res Lett; 2017 Dec; 12(1):374. PubMed ID: 28549379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency.
    Lu H; Liu X; Wang G; Mao D
    Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable high-channel-count bandstop graphene plasmonic filters based on plasmon induced transparency.
    Zhang Z; Long Y; Ma P; Li H
    Nanotechnology; 2017 Nov; 28(47):475205. PubMed ID: 28961146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced transparency in nanoscale plasmonic resonator systems.
    Lu H; Liu X; Mao D; Gong Y; Wang G
    Opt Lett; 2011 Aug; 36(16):3233-5. PubMed ID: 21847218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching of Photonic Crystal Lasers by Graphene.
    Hwang MS; Kim HR; Kim KH; Jeong KY; Park JS; Choi JH; Kang JH; Lee JM; Park WI; Song JH; Seo MK; Park HG
    Nano Lett; 2017 Mar; 17(3):1892-1898. PubMed ID: 28165745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast and low-power multichannel all-optical switcher based on multilayer graphene.
    Wang G; Wu T; Shao Y; Jia Y; Gao Y; Gao Y
    Appl Opt; 2023 Jan; 62(2):500-505. PubMed ID: 36630252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.