BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30347845)

  • 1. Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures using Passive Thermography.
    Zalameda J; Winfree W
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.
    Ciampa F; Mahmoodi P; Pinto F; Meo M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29462953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Impact Damage Detection Technique for Composites Based on Thermographic Image Processing and Machine Learning Classification.
    Alhammad M; Avdelidis NP; Ibarra-Castanedo C; Torbali ME; Genest M; Zhang H; Zolotas A; Maldgue XPV
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite Laminate Delamination Detection Using Transient Thermal Conduction Profiles and Machine Learning Based Data Analysis.
    Gillespie DI; Hamilton AW; Atkinson RC; Bellekens X; Michie C; Andonovic I; Tachtatzis C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Wrinkles Characterization in GFRP Composites by Infrared Active Thermography.
    Stawiarski A; Chwał M; Barski M; Augustyn M
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erratum: Zalameda, J. et al. Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures using Passive Thermography. Sensors 2018, 18, 3562.
    Zalameda J; Winfree W
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact damage visualization in a honeycomb composite panel through laser inspection using zero-lag cross-correlation imaging condition.
    Girolamo D; Chang HY; Yuan FG
    Ultrasonics; 2018 Jul; 87():152-165. PubMed ID: 29522928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Concept of Thermographic Method for Non-Destructive Testing of Polymeric Composite Structures Using Self-Heating Effect.
    Katunin A
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Characterization of Damage Development in Cottonid Due to Quasi-Static Tensile Loading.
    Scholz R; Delp A; Walther F
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure Analysis of Hat-Stringer-Stiffened Aircraft Composite Panels under Four-Point Bending Loading.
    Li B; Gong Y; Gao Y; Hou M; Li L
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.
    Dassios KG; Kordatos EZ; Aggelis DG; Matikas TE
    ScientificWorldJournal; 2013; 2013():715945. PubMed ID: 23935428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24918250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage characterization of embedded defects in composites using a hybrid thermography, computational, and artificial neural networks approach.
    Al-Athel KS; Alhasan MM; Alomari AS; Arif AFM
    Heliyon; 2022 Aug; 8(8):e10063. PubMed ID: 35991970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Microwave Thermography Nondestructive Testing and Evaluation.
    Zhang H; Yang R; He Y; Foudazi A; Cheng L; Tian G
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28505130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Infrared Thermography Sensing Approach for Rapid, Quantitative Assessment of Damage in Aircraft Composites.
    Farmaki S; Exarchos DA; Tragazikis IK; Matikas TE; Dassios KG
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Exposure Temperature on the Crashworthiness of Carbon/Epoxy Composite Rectangular Tubes Under Quasi-Static Compression.
    Sebaey TA
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ tomographic study of a 3D-woven SiC/SiC composite part subjected to severe thermo-mechanical loads.
    Turpin L; Roux S; Caty O; King A; Denneulin S; Martin É
    J Synchrotron Radiat; 2022 Mar; 29(Pt 2):522-531. PubMed ID: 35254317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.
    Leckey CA; Rogge MD; Raymond Parker F
    Ultrasonics; 2014 Jan; 54(1):385-94. PubMed ID: 23769180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.