These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30347974)
1. Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal. Xu D; Wang C; Espejo C; Wang J; Neville A; Morina A Langmuir; 2018 Nov; 34(45):13523-13533. PubMed ID: 30347974 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependence of molybdenum dialkyl dithiocarbamate (MoDTC) tribofilms via time-resolved Raman spectroscopy. Garcia CE; Ueda M; Spikes H; Wong JSS Sci Rep; 2021 Feb; 11(1):3621. PubMed ID: 33574354 [TBL] [Abstract][Full Text] [Related]
3. Atom Probe Tomography Unveils Formation Mechanisms of Wear-Protective Tribofilms by ZDDP, Ionic Liquid, and Their Combination. Guo W; Zhou Y; Sang X; Leonard DN; Qu J; Poplawsky JD ACS Appl Mater Interfaces; 2017 Jul; 9(27):23152-23163. PubMed ID: 28632986 [TBL] [Abstract][Full Text] [Related]
4. Tribocatalytic behaviour of a TiO Deshpande P; Minfray C; Dassenoy F; Le Mogne T; Jose D; Cobian M; Thiebaut B RSC Adv; 2018 Apr; 8(27):15056-15068. PubMed ID: 35541360 [TBL] [Abstract][Full Text] [Related]
5. Ultralow Boundary Lubrication Friction by Three-Way Synergistic Interactions among Ionic Liquid, Friction Modifier, and Dispersant. Li W; Kumara C; Luo H; Meyer HM; He X; Ngo D; Kim SH; Qu J ACS Appl Mater Interfaces; 2020 Apr; 12(14):17077-17090. PubMed ID: 32189490 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of Tribofilm Formation in Boundary Lubrication Investigated Using In Situ Measurements of the Friction Force and Contact Voltage. Tsai AE; Komvopoulos K Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541489 [TBL] [Abstract][Full Text] [Related]
7. Mechanochemistry of Zinc Dialkyldithiophosphate on Steel Surfaces under Elastohydrodynamic Lubrication Conditions. Zhang J; Ewen JP; Ueda M; Wong JSS; Spikes HA ACS Appl Mater Interfaces; 2020 Feb; 12(5):6662-6676. PubMed ID: 31913008 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale Generation of Robust Solid Films from Liquid-Dispersed Nanoparticles via in Situ Atomic Force Microscopy: Growth Kinetics and Nanomechanical Properties. Khare HS; Lahouij I; Jackson A; Feng G; Chen Z; Cooper GD; Carpick RW ACS Appl Mater Interfaces; 2018 Nov; 10(46):40335-40347. PubMed ID: 30335945 [TBL] [Abstract][Full Text] [Related]
9. MoS Oumahi C; De Barros-Bouchet MI; Le Mogne T; Charrin C; Loridant S; Geantet C; Afanasiev P; Thiebaut B RSC Adv; 2018 Jul; 8(46):25867-25872. PubMed ID: 35541938 [TBL] [Abstract][Full Text] [Related]
10. Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants. Tsai AE; Komvopoulos K Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793393 [TBL] [Abstract][Full Text] [Related]
11. Probing the Tribochemical Impact on Wear Rate Dynamics of Hydrogenated Amorphous Carbon via Raman-Based Profilometry. Xu N; Wang C; Yang L; Jose G; Morina A ACS Appl Mater Interfaces; 2022 Jan; 14(1):2071-2081. PubMed ID: 34968025 [TBL] [Abstract][Full Text] [Related]
12. Tribological performance of organic molybdenum in the presence of organic friction modifier. Wang W; Liu Z; Song Q; Zhang X; Jiao S; Xu Y; Xu Q; Sheng D PLoS One; 2021; 16(6):e0252203. PubMed ID: 34111128 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale mechanical properties of in-situ tribofilms generated from ZDDP and F-ZDDP with and without antioxidants. Somayaji A; Mourhatch R; Aswath PB J Nanosci Nanotechnol; 2007 Dec; 7(12):4378-90. PubMed ID: 18283818 [TBL] [Abstract][Full Text] [Related]
14. Robust Interfacial Tribofilms by Borate- and Polymer-Coated ZnO Nanoparticles Leading to Improved Wear Protection under a Boundary Lubrication Regime. Vyavhare K; Timmons RB; Erdemir A; Edwards BL; Aswath PB Langmuir; 2021 Feb; 37(5):1743-1759. PubMed ID: 33502870 [TBL] [Abstract][Full Text] [Related]
15. Palladium Nanoparticle-Enabled Ultrathick Tribofilm with Unique Composition. Kumara C; Leonard DN; Meyer HM; Luo H; Armstrong BL; Qu J ACS Appl Mater Interfaces; 2018 Sep; 10(37):31804-31812. PubMed ID: 30141901 [TBL] [Abstract][Full Text] [Related]
16. In situ tribochemical sulfurization of molybdenum oxide nanotubes. Rodríguez Ripoll M; Tomala A; Gabler C; DraŽić G; Pirker L; Remškar M Nanoscale; 2018 Feb; 10(7):3281-3290. PubMed ID: 29384160 [TBL] [Abstract][Full Text] [Related]
20. Molecular evidence for sulfurization of molybdenum dithiocarbamates (MoDTC) by zinc dithiophosphates: a key process in their synergetic interactions and the enhanced preservation of MoDTC in formulated lubricants? Kiw YM; Adam P; Schaeffer P; Thiébaut B; Boyer C RSC Adv; 2022 Jan; 12(6):3542-3553. PubMed ID: 35425382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]