BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30347974)

  • 1. Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal.
    Xu D; Wang C; Espejo C; Wang J; Neville A; Morina A
    Langmuir; 2018 Nov; 34(45):13523-13533. PubMed ID: 30347974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of molybdenum dialkyl dithiocarbamate (MoDTC) tribofilms via time-resolved Raman spectroscopy.
    Garcia CE; Ueda M; Spikes H; Wong JSS
    Sci Rep; 2021 Feb; 11(1):3621. PubMed ID: 33574354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atom Probe Tomography Unveils Formation Mechanisms of Wear-Protective Tribofilms by ZDDP, Ionic Liquid, and Their Combination.
    Guo W; Zhou Y; Sang X; Leonard DN; Qu J; Poplawsky JD
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23152-23163. PubMed ID: 28632986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tribocatalytic behaviour of a TiO
    Deshpande P; Minfray C; Dassenoy F; Le Mogne T; Jose D; Cobian M; Thiebaut B
    RSC Adv; 2018 Apr; 8(27):15056-15068. PubMed ID: 35541360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow Boundary Lubrication Friction by Three-Way Synergistic Interactions among Ionic Liquid, Friction Modifier, and Dispersant.
    Li W; Kumara C; Luo H; Meyer HM; He X; Ngo D; Kim SH; Qu J
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17077-17090. PubMed ID: 32189490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanochemistry of Zinc Dialkyldithiophosphate on Steel Surfaces under Elastohydrodynamic Lubrication Conditions.
    Zhang J; Ewen JP; Ueda M; Wong JSS; Spikes HA
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6662-6676. PubMed ID: 31913008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Generation of Robust Solid Films from Liquid-Dispersed Nanoparticles via in Situ Atomic Force Microscopy: Growth Kinetics and Nanomechanical Properties.
    Khare HS; Lahouij I; Jackson A; Feng G; Chen Z; Cooper GD; Carpick RW
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40335-40347. PubMed ID: 30335945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoS
    Oumahi C; De Barros-Bouchet MI; Le Mogne T; Charrin C; Loridant S; Geantet C; Afanasiev P; Thiebaut B
    RSC Adv; 2018 Jul; 8(46):25867-25872. PubMed ID: 35541938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants.
    Tsai AE; Komvopoulos K
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Tribochemical Impact on Wear Rate Dynamics of Hydrogenated Amorphous Carbon via Raman-Based Profilometry.
    Xu N; Wang C; Yang L; Jose G; Morina A
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2071-2081. PubMed ID: 34968025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribological performance of organic molybdenum in the presence of organic friction modifier.
    Wang W; Liu Z; Song Q; Zhang X; Jiao S; Xu Y; Xu Q; Sheng D
    PLoS One; 2021; 16(6):e0252203. PubMed ID: 34111128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale mechanical properties of in-situ tribofilms generated from ZDDP and F-ZDDP with and without antioxidants.
    Somayaji A; Mourhatch R; Aswath PB
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4378-90. PubMed ID: 18283818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Interfacial Tribofilms by Borate- and Polymer-Coated ZnO Nanoparticles Leading to Improved Wear Protection under a Boundary Lubrication Regime.
    Vyavhare K; Timmons RB; Erdemir A; Edwards BL; Aswath PB
    Langmuir; 2021 Feb; 37(5):1743-1759. PubMed ID: 33502870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium Nanoparticle-Enabled Ultrathick Tribofilm with Unique Composition.
    Kumara C; Leonard DN; Meyer HM; Luo H; Armstrong BL; Qu J
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31804-31812. PubMed ID: 30141901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ tribochemical sulfurization of molybdenum oxide nanotubes.
    Rodríguez Ripoll M; Tomala A; Gabler C; DraŽić G; Pirker L; Remškar M
    Nanoscale; 2018 Feb; 10(7):3281-3290. PubMed ID: 29384160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-Functionalized Polytetrafluoroethylene Nanoparticles for Improved Wear in Lubricated Contact.
    Sharma V; Timmons R; Erdemir A; Aswath PB
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25631-25641. PubMed ID: 28657292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What stress components drive mechanochemistry? A study of ZDDP tribofilm formation.
    Fang L; Korres S; Lamberti WA; Webster MN; Carpick RW
    Faraday Discuss; 2023 Jan; 241(0):394-412. PubMed ID: 36134687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evidence for sulfurization of molybdenum dithiocarbamates (MoDTC) by zinc dithiophosphates: a key process in their synergetic interactions and the enhanced preservation of MoDTC in formulated lubricants?
    Kiw YM; Adam P; Schaeffer P; Thiébaut B; Boyer C
    RSC Adv; 2022 Jan; 12(6):3542-3553. PubMed ID: 35425382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribology. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts.
    Gosvami NN; Bares JA; Mangolini F; Konicek AR; Yablon DG; Carpick RW
    Science; 2015 Apr; 348(6230):102-6. PubMed ID: 25765069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles.
    Chen G; Zhao J; Chen K; Liu S; Zhang M; He Y; Luo J
    Langmuir; 2020 Feb; 36(4):852-861. PubMed ID: 31898907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.