These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30348389)

  • 1. Binding strategies for capturing and growing Escherichia coli on surfaces of biosensing devices.
    Choinière S; Frost EH; Dubowski JJ
    Talanta; 2019 Jan; 192():270-277. PubMed ID: 30348389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Escherichia coli on the GaAs (001) surface.
    Nazemi E; Hassen WM; Frost EH; Dubowski JJ
    Talanta; 2018 Feb; 178():69-77. PubMed ID: 29136882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring growth and antibiotic susceptibility of Escherichia coli with photoluminescence of GaAs/AlGaAs quantum well microstructures.
    Nazemi E; Hassen WM; Frost EH; Dubowski JJ
    Biosens Bioelectron; 2017 Jul; 93():234-240. PubMed ID: 27617412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture".
    Massad-Ivanir N; Shtenberg G; Tzur A; Krepker MA; Segal E
    Anal Chem; 2011 May; 83(9):3282-9. PubMed ID: 21425788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody immobilization using pneumatic spray: comparison with the avidin-biotin bridge immobilization method.
    Figueroa J; Magaña S; Lim DV; Schlaf R
    J Immunol Methods; 2012 Dec; 386(1-2):1-9. PubMed ID: 22955211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for capturing Bacillus thuringiensis spores on surfaces of (001) GaAs-based biosensors.
    Moteshareie H; Hassen WM; Vermette J; Dubowski JJ; Tayabali AF
    Talanta; 2022 Jan; 236():122813. PubMed ID: 34635209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples.
    Vaisocherová-Lísalová H; Víšová I; Ermini ML; Špringer T; Song XC; Mrázek J; Lamačová J; Scott Lynn N; Šedivák P; Homola J
    Biosens Bioelectron; 2016 Jun; 80():84-90. PubMed ID: 26807521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring biosensor capture efficiencies: development of a model using GFP-expressing Escherichia coli O157:H7.
    Simpson-Stroot JM; Kearns EA; Stroot PG; Magaña S; Lim DV
    J Microbiol Methods; 2008 Jan; 72(1):29-37. PubMed ID: 18096260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical detection of E. coli bacteria by mesoporous silicon biosensors.
    Massad-Ivanir N; Shtenberg G; Segal E
    J Vis Exp; 2013 Nov; (81):e50805. PubMed ID: 24300026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance.
    Maalouf R; Fournier-Wirth C; Coste J; Chebib H; Saïkali Y; Vittori O; Errachid A; Cloarec JP; Martelet C; Jaffrezic-Renault N
    Anal Chem; 2007 Jul; 79(13):4879-86. PubMed ID: 17523594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerable ZnO/GaAs Bulk Acoustic Wave Biosensor for Detection of
    Chawich J; Hassen WM; Elie-Caille C; Leblois T; Dubowski JJ
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34067116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance biosensing using phages for bacteria detection: generation of dual signals as the clue for in-chip assay confirmation.
    Mejri MB; Baccar H; Baldrich E; Del Campo FJ; Helali S; Ktari T; Simonian A; Aouni M; Abdelghani A
    Biosens Bioelectron; 2010 Dec; 26(4):1261-7. PubMed ID: 20673624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli.
    Yamada K; Kim CT; Kim JH; Chung JH; Lee HG; Jun S
    PLoS One; 2014; 9(9):e105767. PubMed ID: 25233366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microwave matrix sensor for multipoint label-free Escherichia coli detection.
    Piekarz I; Górska S; Odrobina S; Drab M; Wincza K; Gamian A; Gruszczynski S
    Biosens Bioelectron; 2020 Jan; 147():111784. PubMed ID: 31654823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms.
    García-Aljaro C; Cella LN; Shirale DJ; Park M; Muñoz FJ; Yates MV; Mulchandani A
    Biosens Bioelectron; 2010 Dec; 26(4):1437-41. PubMed ID: 20729063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection of E. coli K12 and S. aureus Using a Continuous Flow Multijunction Biosensor.
    Lee I; Jun S
    J Food Sci; 2016 Jun; 81(6):N1530-6. PubMed ID: 27096467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotaxis for enhanced immobilization of Escherichia coli and Legionella pneumophila on biofunctionalized surfaces of GaAs.
    Hassen WM; Sanyal H; Hammood M; Moumanis K; Frost EH; Dubowski JJ
    Biointerphases; 2016 Jun; 11(2):021004. PubMed ID: 27098616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticles-based multifunctional nanoconjugates for highly sensitive and enzyme-free detection of E.coli K12.
    Zou Y; Liang J; She Z; Kraatz HB
    Talanta; 2019 Feb; 193():15-22. PubMed ID: 30368284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of E. coli bacteria in three-dimensional matrices for ISFET biosensor design.
    Bettaieb F; Ponsonnet L; Lejeune P; Ouada HB; Martelet C; Bakhrouf A; Jaffrézic-Renault N; Othmane A
    Bioelectrochemistry; 2007 Nov; 71(2):118-25. PubMed ID: 17398167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific and targeted detection of viable Escherichia coli O157:H7 using a sensitive and reusable impedance biosensor with dose and time response studies.
    Dweik M; Stringer RC; Dastider SG; Wu Y; Almasri M; Barizuddin S
    Talanta; 2012 May; 94():84-9. PubMed ID: 22608418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.