These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30348448)

  • 1. A normative database of hip and knee joint biomechanics during dynamic tasks using anatomical regression prediction methods.
    Bennett HJ; Fleenor K; Weinhandl JT
    J Biomech; 2018 Nov; 81():122-131. PubMed ID: 30348448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Normative Database of Hip and Knee Joint Biomechanics During Dynamic Tasks Using Four Functional Methods With Three Functional Calibration Tasks.
    Bennett HJ; Valenzuela KA; Fleenor K; Weinhandl JT
    J Biomech Eng; 2020 Apr; 142(4):. PubMed ID: 31513696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the greater trochanter method with radiographic measurements of frontal plane hip joint centers and knee mechanical axis angles and two other hip joint center methods.
    Bennett HJ; Shen G; Weinhandl JT; Zhang S
    J Biomech; 2016 Sep; 49(13):3047-3051. PubMed ID: 27344200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional hip and knee kinematics during walking, running, and single-limb drop landing in females with and without genu valgum.
    Barrios JA; Heitkamp CA; Smith BP; Sturgeon MM; Suckow DW; Sutton CR
    Clin Biomech (Bristol, Avon); 2016 Jan; 31():7-11. PubMed ID: 26515886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Verification of an improved hip joint center prediction method.
    Miller EJ; Kaufman KR
    Gait Posture; 2018 Jan; 59():174-176. PubMed ID: 29035841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences and correlations in knee and hip mechanics during single-leg landing, single-leg squat, double-leg landing, and double-leg squat tasks.
    Donohue MR; Ellis SM; Heinbaugh EM; Stephenson ML; Zhu Q; Dai B
    Res Sports Med; 2015; 23(4):394-411. PubMed ID: 26275102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender-based age differences in hip and knee kinematics of Chinese adults during walking and running.
    Chen S; Cheng G; Lin Y
    J Back Musculoskelet Rehabil; 2020; 33(2):217-224. PubMed ID: 31282396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hip joint centre mislocation on gait analysis results.
    Stagni R; Leardini A; Cappozzo A; Grazia Benedetti M; Cappello A
    J Biomech; 2000 Nov; 33(11):1479-87. PubMed ID: 10940407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hip rotation angle is associated with frontal plane knee joint mechanics during running.
    Sakaguchi M; Shimizu N; Yanai T; Stefanyshyn DJ; Kawakami Y
    Gait Posture; 2015 Feb; 41(2):557-61. PubMed ID: 25572723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling motion between rearfoot and hip and knee joints during walking and single-leg landing.
    Koshino Y; Yamanaka M; Ezawa Y; Okunuki T; Ishida T; Samukawa M; Tohyama H
    J Electromyogr Kinesiol; 2017 Dec; 37():75-83. PubMed ID: 28963938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of Knee Motions With Static Leg Alignments and Hip Motions in Frontal and Transverse Planes During Double-Leg Landing in Healthy Athletes.
    Uota S; Nguyen AD; Aminaka N; Shimokochi Y
    J Sport Rehabil; 2017 Sep; 26(5):396-405. PubMed ID: 27632880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo quantification of dynamic hip joint center errors and soft tissue artifact.
    Fiorentino NM; Atkins PR; Kutschke MJ; Foreman KB; Anderson AE
    Gait Posture; 2016 Oct; 50():246-251. PubMed ID: 27693944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Anatomical and Functional Hip Joint Center Methods: The Effects of Activity Type, Gender, and Proximal Reference Segment.
    McGibbon CA; Fowler J; Chase S; Steeves K; Landry J; Mohamed A
    J Biomech Eng; 2016 Jan; 138(1):. PubMed ID: 26594023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal plane kinematics predict three-dimensional hip adduction during running.
    Creaby MW; Le Rossignol S; Conway ZJ; Ageberg E; Sweeney M; Franettovich Smith MM
    Phys Ther Sport; 2017 Sep; 27():1-6. PubMed ID: 28777956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knee and hip joint biomechanics are gender-specific in runners with high running mileage.
    Gehring D; Mornieux G; Fleischmann J; Gollhofer A
    Int J Sports Med; 2014 Feb; 35(2):153-8. PubMed ID: 23868680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.