These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 3034860)
1. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. Schnetz K; Toloczyki C; Rak B J Bacteriol; 1987 Jun; 169(6):2579-90. PubMed ID: 3034860 [TBL] [Abstract][Full Text] [Related]
2. Positive and negative regulation of the bgl operon in Escherichia coli. Mahadevan S; Reynolds AE; Wright A J Bacteriol; 1987 Jun; 169(6):2570-8. PubMed ID: 3294798 [TBL] [Abstract][Full Text] [Related]
3. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. Krüger S; Hecker M J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347 [TBL] [Abstract][Full Text] [Related]
5. Regulation of the beta-glucoside system in Escherchia coli K-12. Prasad I; Schaefler S J Bacteriol; 1974 Nov; 120(2):638-50. PubMed ID: 4616943 [TBL] [Abstract][Full Text] [Related]
6. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. el Hassouni M; Henrissat B; Chippaux M; Barras F J Bacteriol; 1992 Feb; 174(3):765-77. PubMed ID: 1732212 [TBL] [Abstract][Full Text] [Related]
7. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Parker LL; Hall BG Genetics; 1990 Mar; 124(3):455-71. PubMed ID: 2179047 [TBL] [Abstract][Full Text] [Related]
8. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli. Raghunand TR; Mahadevan S FEMS Microbiol Lett; 2003 Jun; 223(2):267-74. PubMed ID: 12829297 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state. Kharat AS; Mahadevan S Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2039-2049. PubMed ID: 10931908 [TBL] [Abstract][Full Text] [Related]
10. Nucleotide sequence of bglC, the gene specifying enzymeIIbgl of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product. Bramley HF; Kornberg HL J Gen Microbiol; 1987 Mar; 133(3):563-73. PubMed ID: 3309161 [TBL] [Abstract][Full Text] [Related]
11. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Defez R; De Felice M Genetics; 1981 Jan; 97(1):11-25. PubMed ID: 6266910 [TBL] [Abstract][Full Text] [Related]
12. Cloning and sequencing of a cellobiose phosphotransferase system operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli. Lai X; Ingram LO J Bacteriol; 1993 Oct; 175(20):6441-50. PubMed ID: 8407820 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. Schnetz K; Rak B EMBO J; 1988 Oct; 7(10):3271-7. PubMed ID: 2846278 [TBL] [Abstract][Full Text] [Related]
14. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm. Harwani D Braz J Microbiol; 2014; 45(4):1139-44. PubMed ID: 25763016 [TBL] [Abstract][Full Text] [Related]
15. Identification of catalytic residues in the beta-glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the beta-glucoside and glucose systems. Schnetz K; Sutrina SL; Saier MH; Rak B J Biol Chem; 1990 Aug; 265(23):13464-71. PubMed ID: 2199437 [TBL] [Abstract][Full Text] [Related]
16. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control. Schnetz K; Rak B Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5074-8. PubMed ID: 2195546 [TBL] [Abstract][Full Text] [Related]
17. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Desai SK; Nandimath K; Mahadevan S Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693 [TBL] [Abstract][Full Text] [Related]
18. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Zhu PP; Reizer J; Peterkofsky A Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858 [TBL] [Abstract][Full Text] [Related]
19. Cloning and biochemical analysis of β-glucoside utilization (bgl) operon without phosphotransferase system in Pectobacterium carotovorum subsp. carotovorum LY34. An CL; Kim MK; Kang TH; Kim J; Kim H; Yun HD Microbiol Res; 2012 Sep; 167(8):461-9. PubMed ID: 22502871 [TBL] [Abstract][Full Text] [Related]
20. Suppression of the Bgl+ phenotype of a delta hns strain of Escherichia coli by a Bacillus subtilis antiterminator binding site. Beloin C; Hirschbein L; Le Hégarat F Mol Gen Genet; 1996 Apr; 250(6):761-6. PubMed ID: 8628237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]