These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30348647)

  • 1. Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish
    Neil TR; Askew GN
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30348647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses.
    Dabiri JO; Colin SP; Costello JH; Gharib M
    J Exp Biol; 2005 Apr; 208(Pt 7):1257-65. PubMed ID: 15781886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic and live medusae reveal the mechanistic advantages of a flexible bell margin.
    Colin SP; Costello JH; Dabiri JO; Villanueva A; Blottman JB; Gemmell BJ; Priya S
    PLoS One; 2012; 7(11):e48909. PubMed ID: 23145016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans.
    Gemmell BJ; Costello JH; Colin SP; Stewart CJ; Dabiri JO; Tafti D; Priya S
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17904-9. PubMed ID: 24101461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological diversity of medusan lineages constrained by animal-fluid interactions.
    Dabiri JO; Colin SP; Costello JH
    J Exp Biol; 2007 Jun; 210(Pt 11):1868-73. PubMed ID: 17515413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita).
    McHenry MJ; Jed J
    J Exp Biol; 2003 Nov; 206(Pt 22):4125-37. PubMed ID: 14555752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish.
    Santhanakrishnan A; Dollinger M; Hamlet CL; Colin SP; Miller LA
    J Exp Biol; 2012 Jul; 215(Pt 14):2369-81. PubMed ID: 22723475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae.
    Colin SP; Costello JH
    J Exp Biol; 2002 Feb; 205(Pt 3):427-37. PubMed ID: 11854379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread utilization of passive energy recapture in swimming medusae.
    Gemmell BJ; Colin SP; Costello JH
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29180601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of vortex rings for manoeuvrability.
    Gemmell BJ; Troolin DR; Costello JH; Colin SP; Satterlie RA
    J R Soc Interface; 2015 Jul; 12(108):20150389. PubMed ID: 26136226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The most efficient metazoan swimmer creates a 'virtual wall' to enhance performance.
    Gemmell BJ; Du Clos KT; Colin SP; Sutherland KR; Costello JH
    Proc Biol Sci; 2021 Jan; 288(1942):20202494. PubMed ID: 33402068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Sahin M; Mohseni K; Colin SP
    J Exp Biol; 2009 Aug; 212(Pt 16):2656-67. PubMed ID: 19648411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hydrodynamics of Jellyfish Swimming.
    Costello JH; Colin SP; Dabiri JO; Gemmell BJ; Lucas KN; Sutherland KR
    Ann Rev Mar Sci; 2021 Jan; 13():375-396. PubMed ID: 32600216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenetic propulsive transitions by Sarsia tubulosa medusae.
    Katija K; Colin SP; Costello JH; Jiang H
    J Exp Biol; 2015 Aug; 218(Pt 15):2333-43. PubMed ID: 26026040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propulsion in cubomedusae: mechanisms and utility.
    Colin SP; Costello JH; Katija K; Seymour J; Kiefer K
    PLoS One; 2013; 8(2):e56393. PubMed ID: 23437122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake.
    Dabiri JO; Colin SP; Costello JH
    J Exp Biol; 2006 Jun; 209(Pt 11):2025-33. PubMed ID: 16709905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogenetic transitions, biomechanical trade-offs and macroevolution of scyphozoan medusae swimming patterns.
    von Montfort GM; Costello JH; Colin SP; Morandini AC; Migotto AE; Maronna MM; Reginato M; Miyake H; Nagata RM
    Sci Rep; 2023 Jun; 13(1):9760. PubMed ID: 37328506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Lipinski D; Mohseni K
    J Exp Biol; 2009 Aug; 212(Pt 15):2436-47. PubMed ID: 19617437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.