BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3034870)

  • 21. Enzymatic and electron transfer activities in crystalline protein complexes.
    Merli A; Brodersen DE; Morini B; Chen Z; Durley RC; Mathews FS; Davidson VL; Rossi GL
    J Biol Chem; 1996 Apr; 271(16):9177-80. PubMed ID: 8621571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The microbial metabolism of C1 compounds. The cytochromes of Pseudomaonas AM1.
    Anthony C
    Biochem J; 1975 Feb; 146(2):289-98. PubMed ID: 239691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-dependent semiquinone formation by methylamine dehydrogenase from Paracoccus denitrificans. Evidence for intermolecular electron transfer between quinone cofactors.
    Davidson VL; Jones LH; Kumar MA
    Biochemistry; 1990 Dec; 29(48):10786-91. PubMed ID: 2271681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tyr(30) of amicyanin is not critical for electron transfer to cytochrome c-551i: implications for predicting electron transfer pathways.
    Davidson VL; Jones LH; Graichen ME; Zhu Z
    Biochim Biophys Acta; 2000 Feb; 1457(1-2):27-35. PubMed ID: 10692547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The microbial metabolism of Cl compounds. The stoicheiometry of respiration-driven proton translocation in Pseudomonas AM1 and in a mutant lacking cytochrome c.
    O'Keefe DT; Anthony C
    Biochem J; 1978 Mar; 170(3):561-7. PubMed ID: 25651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex.
    Meschi F; Wiertz F; Klauss L; Cavalieri C; Blok A; Ludwig B; Heering HA; Merli A; Rossi GL; Ubbink M
    J Am Chem Soc; 2010 Oct; 132(41):14537-45. PubMed ID: 20873742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and characterization of azurin from the methylamine-utilizing obligate methylotroph Methylobacillus flagellatus KT.
    Dinarieva TY; Trashin SA; Kahnt J; Karyakin AA; Netrusov AI
    Can J Microbiol; 2012 Apr; 58(4):516-22. PubMed ID: 22455796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preliminary crystal structure studies of a ternary electron transfer complex between a quinoprotein, a blue copper protein, and a c-type cytochrome.
    Chen L; Mathews FS; Davidson VL; Tegoni M; Rivetti C; Rossi GL
    Protein Sci; 1993 Feb; 2(2):147-54. PubMed ID: 8382992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methylamine dehydrogenase of Pseudomonas sp. J. Purification and properties.
    Matsumoto T
    Biochim Biophys Acta; 1978 Feb; 522(2):291-302. PubMed ID: 23836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New pathway of amine oxidation respiratory chain of Paracoccus denitrificans IFO 12442.
    Takagi K; Yamamoto K; Kano K; Ikeda T
    Eur J Biochem; 2001 Jan; 268(2):470-6. PubMed ID: 11168384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-directed mutagenesis of proline 94 to alanine in amicyanin converts a true electron transfer reaction into one that is kinetically coupled.
    Sun D; Li X; Mathews FS; Davidson VL
    Biochemistry; 2005 May; 44(19):7200-6. PubMed ID: 15882058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methylamine dehydrogenase and cytochrome c552 from the bacterium W3A1.
    Chandrasekar R; Klapper MH
    J Biol Chem; 1986 Mar; 261(8):3616-9. PubMed ID: 3005294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The microbial metabolism of C1 compounds. The electron-transport chain of Pseudomonas am1.
    Widdowson D; Anthony C
    Biochem J; 1975 Nov; 152(2):349-56. PubMed ID: 1220689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper-binding energetics of amicyanin in different folding states.
    Jeoung S; Shin S; Choi M
    Metallomics; 2020 Feb; 12(2):273-279. PubMed ID: 31830170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of pH and cations on the spectral and kinetic properties of methylamine dehydrogenase from Thiobacillus versutus.
    Gorren AC; Duine JA
    Biochemistry; 1994 Oct; 33(40):12202-9. PubMed ID: 7918441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-directed mutagenesis of Phe 97 to Glu in amicyanin alters the electronic coupling for interprotein electron transfer from quinol methylamine dehydrogenase.
    Davidson VL; Jones LH; Zhu Z
    Biochemistry; 1998 May; 37(20):7371-7. PubMed ID: 9585551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial oxidation of amines. Spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AM1.
    Eady RR; Large PJ
    Biochem J; 1971 Aug; 123(5):757-71. PubMed ID: 5124384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding constants for a physiologic electron-transfer protein complex between methylamine dehydrogenase and amicyanin. Effects of ionic strength and bound copper on binding.
    Davidson VL; Graichen ME; Jones LH
    Biochim Biophys Acta; 1993 Aug; 1144(1):39-45. PubMed ID: 8347660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of growth conditions on the involvement of cytochrome c in electron transport, proton translocation and ATP synthesis in the facultative methylotroph Pseudomonas AM1.
    Keevil CW; Anthony C
    Biochem J; 1979 Jul; 182(1):71-9. PubMed ID: 227369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single methionine residue dictates the kinetic mechanism of interprotein electron transfer from methylamine dehydrogenase to amicyanin.
    Ma JK; Wang Y; Carrell CJ; Mathews FS; Davidson VL
    Biochemistry; 2007 Oct; 46(39):11137-46. PubMed ID: 17824674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.