BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 30348755)

  • 1.
    Yourik P; Fuchs RT; Mabuchi M; Curcuru JL; Robb GB
    RNA; 2019 Jan; 25(1):35-44. PubMed ID: 30348755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA rehybridization drives product release from Cas9 ribonucleoprotein to enable multiple-turnover cleavage.
    Pan J; Mabuchi M; Robb GB
    Nucleic Acids Res; 2023 May; 51(8):3903-3917. PubMed ID: 37014013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
    Babu K; Kathiresan V; Kumari P; Newsom S; Parameshwaran HP; Chen X; Liu J; Qin PZ; Rajan R
    Biochemistry; 2021 Dec; 60(49):3783-3800. PubMed ID: 34757726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
    Dong D; Guo M; Wang S; Zhu Y; Wang S; Xiong Z; Yang J; Xu Z; Huang Z
    Nature; 2017 Jun; 546(7658):436-439. PubMed ID: 28448066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potent CRISPR-Cas9 inhibitors from
    Watters KE; Shivram H; Fellmann C; Lew RJ; McMahon B; Doudna JA
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6531-6539. PubMed ID: 32156733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor.
    Kim I; Jeong M; Ka D; Han M; Kim NK; Bae E; Suh JY
    Sci Rep; 2018 Mar; 8(1):3883. PubMed ID: 29497118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo.
    Ibraheim R; Song CQ; Mir A; Amrani N; Xue W; Sontheimer EJ
    Genome Biol; 2018 Sep; 19(1):137. PubMed ID: 30231914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer.
    Mahendra C; Christie KA; Osuna BA; Pinilla-Redondo R; Kleinstiver BP; Bondy-Denomy J
    Nat Microbiol; 2020 Apr; 5(4):620-629. PubMed ID: 32218510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.
    Briner AE; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
    Liu L; Yin M; Wang M; Wang Y
    Mol Cell; 2019 Feb; 73(3):611-620.e3. PubMed ID: 30606466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guide-free Cas9 from pathogenic
    Saha C; Mohanraju P; Stubbs A; Dugar G; Hoogstrate Y; Kremers GJ; van Cappellen WA; Horst-Kreft D; Laffeber C; Lebbink JHG; Bruens S; Gaskin D; Beerens D; Klunder M; Joosten R; Demmers JAA; van Gent D; Mouton JW; van der Spek PJ; van der Oost J; van Baarlen P; Louwen R
    Sci Adv; 2020 Jun; 6(25):eaaz4849. PubMed ID: 32596446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.
    Halat M; Klimek-Chodacka M; Orleanska J; Baranska M; Baranski R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing.
    Feng Y; Liu S; Chen R; Xie A
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.
    Vazquez Reyes C; Tangprasertchai NS; Yogesha SD; Nguyen RH; Zhang X; Rajan R; Qin PZ
    Cell Biochem Biophys; 2017 Jun; 75(2):203-210. PubMed ID: 27342128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance.
    Babu K; Amrani N; Jiang W; Yogesha SD; Nguyen R; Qin PZ; Rajan R
    Biochemistry; 2019 Apr; 58(14):1905-1917. PubMed ID: 30916546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single molecule methods for studying CRISPR Cas9-induced DNA unwinding.
    Okafor IC; Choi J; Ha T
    Methods; 2022 Aug; 204():319-326. PubMed ID: 34767923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.