BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30348795)

  • 1. Extensile motor activity drives coherent motions in a model of interphase chromatin.
    Saintillan D; Shelley MJ; Zidovska A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11442-11447. PubMed ID: 30348795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micron-scale coherence in interphase chromatin dynamics.
    Zidovska A; Weitz DA; Mitchison TJ
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15555-60. PubMed ID: 24019504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-Driven Phase Transition Causes Coherent Flows of Chromatin.
    Eshghi I; Zidovska A; Grosberg AY
    Phys Rev Lett; 2023 Jul; 131(4):048401. PubMed ID: 37566839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin assembly by DNA-translocating motors.
    Haushalter KA; Kadonaga JT
    Nat Rev Mol Cell Biol; 2003 Aug; 4(8):613-20. PubMed ID: 12923523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin as an active polymeric material.
    Menon GI
    Emerg Top Life Sci; 2020 Sep; 4(2):111-118. PubMed ID: 32830859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.
    Blackwell R; Sweezy-Schindler O; Baldwin C; Hough LE; Glaser MA; Betterton MD
    Soft Matter; 2016 Mar; 12(10):2676-87. PubMed ID: 26742483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale chromatin organization and the localization of proteins involved in gene expression in human cells.
    Verschure PJ; Van Der Kraan I; Enserink JM; Moné MJ; Manders EM; Van Driel R
    J Histochem Cytochem; 2002 Oct; 50(10):1303-12. PubMed ID: 12364563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin dynamics during interphase explored by single-particle tracking.
    Levi V; Gratton E
    Chromosome Res; 2008; 16(3):439-49. PubMed ID: 18461483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome dynamics in the yeast interphase nucleus.
    Heun P; Laroche T; Shimada K; Furrer P; Gasser SM
    Science; 2001 Dec; 294(5549):2181-6. PubMed ID: 11739961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications.
    Zidovska A
    Curr Opin Genet Dev; 2020 Apr; 61():83-90. PubMed ID: 32497955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motorized chain models of the ideal chromosome.
    Cao Z; Wolynes PG
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2407077121. PubMed ID: 38954553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interphase Chromatin Undergoes a Local Sol-Gel Transition upon Cell Differentiation.
    Eshghi I; Eaton JA; Zidovska A
    Phys Rev Lett; 2021 Jun; 126(22):228101. PubMed ID: 34152157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry-based classification of forces driving chromatin dynamics.
    Eshghi I; Zidovska A; Grosberg AY
    Soft Matter; 2022 Nov; 18(42):8134-8146. PubMed ID: 36239271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Nuclear Structure Emerges from Chromatin Cross-Links and Motors.
    Liu K; Patteson AE; Banigan EJ; Schwarz JM
    Phys Rev Lett; 2021 Apr; 126(15):158101. PubMed ID: 33929233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polymer chain with dipolar active forces in connection to spatial organization of chromatin.
    Chaki S; Theeyancheri L; Chakrabarti R
    Soft Matter; 2023 Feb; 19(7):1348-1355. PubMed ID: 36723034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics.
    Keizer VIP; Grosse-Holz S; Woringer M; Zambon L; Aizel K; Bongaerts M; Delille F; Kolar-Znika L; Scolari VF; Hoffmann S; Banigan EJ; Mirny LA; Dahan M; Fachinetti D; Coulon A
    Science; 2022 Jul; 377(6605):489-495. PubMed ID: 35901134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microrheology of interphase chromosomes with spatial constraints: a computational study.
    Papale A; Rosa A
    Phys Biol; 2019 Sep; 16(6):066002. PubMed ID: 31394517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions.
    Musinova YR; Lisitsyna OM; Golyshev SA; Tuzhikov AI; Polyakov VY; Sheval EV
    Biochim Biophys Acta; 2011 Jan; 1813(1):27-38. PubMed ID: 21095207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin structure exhibits spatio-temporal heterogeneity within the cell nucleus.
    Banerjee B; Bhattacharya D; Shivashankar GV
    Biophys J; 2006 Sep; 91(6):2297-303. PubMed ID: 16815897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H1.X with different properties from other linker histones is required for mitotic progression.
    Takata H; Matsunaga S; Morimoto A; Ono-Maniwa R; Uchiyama S; Fukui K
    FEBS Lett; 2007 Aug; 581(20):3783-8. PubMed ID: 17632103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.