These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30349018)

  • 1. Probing flow-induced nanostructure of complex fluids in arbitrary 2D flows using a fluidic four-roll mill (FFoRM).
    Corona PT; Ruocco N; Weigandt KM; Leal LG; Helgeson ME
    Sci Rep; 2018 Oct; 8(1):15559. PubMed ID: 30349018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical degradation of proteins in well-defined fluid flows studied within a four-roll apparatus.
    Simon S; Krause HJ; Weber C; Peukert W
    Biotechnol Bioeng; 2011 Dec; 108(12):2914-22. PubMed ID: 21732328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic-SANS: flow processing of complex fluids.
    Lopez CG; Watanabe T; Martel A; Porcar L; Cabral JT
    Sci Rep; 2015 Jan; 5():7727. PubMed ID: 25578326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.
    Fishler R; Mulligan MK; Sznitman J
    J Biomech; 2013 Nov; 46(16):2817-23. PubMed ID: 24090494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet microfluidic SANS.
    Adamo M; Poulos AS; G Lopez C; Martel A; Porcar L; Cabral JT
    Soft Matter; 2018 Mar; 14(10):1759-1770. PubMed ID: 29355865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements.
    Hjelm RP; Taylor MA; Frash LP; Hawley ME; Ding M; Xu H; Barker J; Olds D; Heath J; Dewers T
    Rev Sci Instrum; 2018 May; 89(5):055115. PubMed ID: 29864818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking control of colloidal particles through non-homogeneous stationary flows.
    Híjar H
    J Chem Phys; 2013 Dec; 139(23):234903. PubMed ID: 24359389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics.
    Khodarahmi I; Shakeri M; Kotys-Traughber M; Fischer S; Sharp MK; Amini AA
    J Magn Reson Imaging; 2014 Jun; 39(6):1477-85. PubMed ID: 24123721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheo-small-angle neutron scattering at the National Institute of Standards and Technology Center for Neutron Research.
    Porcar L; Pozzo D; Langenbucher G; Moyer J; Butler PD
    Rev Sci Instrum; 2011 Aug; 82(8):083902. PubMed ID: 21895253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic capsule deformation in general irrotational linear flows.
    Szatmary AC; Eggleton CD
    Fluid Dyn Res; 2012; 44(5):55503. PubMed ID: 23426110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metrology of confined flows using wide field nanoparticle velocimetry.
    Ranchon H; Picot V; Bancaud A
    Sci Rep; 2015 May; 5():10128. PubMed ID: 25974654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of flexible filaments in oscillatory shear flows.
    Bonacci F; Chakrabarti B; Saintillan D; du Roure O; Lindner A
    J Fluid Mech; 2023 Jan; 955():. PubMed ID: 36936351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the limits of metal plasticity with molecular dynamics simulations.
    Zepeda-Ruiz LA; Stukowski A; Oppelstrup T; Bulatov VV
    Nature; 2017 Oct; 550(7677):492-495. PubMed ID: 28953878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A penalty method to model particle interactions in DNA-laden flows.
    Trebotich D; Miller GH; Bybee MD
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3749-56. PubMed ID: 19051932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Small-Angle Neutron Scattering Environment for In-Situ Observation of Chemical Processes.
    Hayward DW; Chiappisi L; Prévost S; Schweins R; Gradzielski M
    Sci Rep; 2018 May; 8(1):7299. PubMed ID: 29740024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
    Sharma V; Haward SJ; Serdy J; Keshavarz B; Soderlund A; Threlfall-Holmes P; McKinley GH
    Soft Matter; 2015 Apr; 11(16):3251-70. PubMed ID: 25782987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alignment of particles in sheared viscoelastic fluids.
    Santos de Oliveira IS; van den Noort A; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2011 Sep; 135(10):104902. PubMed ID: 21932919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally efficient particle release map determination for direct tumor-targeting in a representative hepatic artery system.
    Childress EM; Kleinstreuer C
    J Biomech Eng; 2014 Jan; 136(1):011012. PubMed ID: 24190601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.