BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 30349957)

  • 1. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation.
    Islam MT; Ahmed ST; Shahnaz C; Fattah SA
    Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering.
    Wang M; Li Z; Zhang Q; Wang G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Heart Rate Estimation During Physical Exercise Using Photoplethysmographic Signals.
    Motin MA; Karmakar CK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():494-497. PubMed ID: 30440442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite State Machine Framework for Instantaneous Heart Rate Validation Using Wearable Photoplethysmography During Intensive Exercise.
    Chung H; Lee H; Lee J
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1595-1606. PubMed ID: 30235152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals.
    Song J; Li D; Ma X; Teng G; Wei J
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart Rate Estimation using PPG signal during Treadmill Exercise.
    Kong Y; Chon K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3253-3256. PubMed ID: 31946579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation.
    Chowdhury SS; Hyder R; Hafiz MSB; Haque MA
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of heart rate from photoplethysmography during physical exercise using Wiener filtering and the phase vocoder.
    Temko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1500-3. PubMed ID: 26736555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
    Temko A
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of photoplethysmogram signal to estimate heart rate during physical activity using fractional fourier transform - A sampling frequency independent and reference signal-less method.
    Pankaj ; Kumar A; Ashdhir A; Komaragiri R; Kumar M
    Comput Methods Programs Biomed; 2023 Feb; 229():107294. PubMed ID: 36528998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts.
    Ye Y; He W; Cheng Y; Huang W; Zhang Z
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and reduction of motion artifacts in photoplethysmographic signals from a wrist-worn device.
    Tăuţan AM; Young A; Wentink E; Wieringa F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6146-9. PubMed ID: 26737695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust heart rate estimation using wrist-type photoplethysmographic signals during physical exercise: an approach based on adaptive filtering.
    Fallet S; Vesin JM
    Physiol Meas; 2017 Feb; 38(2):155-170. PubMed ID: 28055986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.
    Xiong J; Cai L; Wang F; He X
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart Rate monitoring during physical exercise using wrist-type photoplethysmographic (PPG) signals.
    Ahmadi AK; Moradi P; Malihi M; Karimi S; Shamsollahi MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6166-9. PubMed ID: 26737700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARHELIA: Particle Filter-Based Heart Rate Estimation From Photoplethysmographic Signals During Physical Exercise.
    Fujita Y; Hiromoto M; Sato T
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):189-198. PubMed ID: 28459679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Wavelength Photoplethysmography Framework for Heart Rate Calculation.
    Alkhoury L; Choi J; Chandran VD; De Carvalho GB; Pal S; Kam M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.