BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 30349957)

  • 21. Precision Heart Rate Estimation Using a PPG Sensor Patch Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition.
    Thakur S; Chao PC; Tsai CH
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust Heart Rate Monitoring for Quasi-Periodic Motions by Wrist-Type PPG Signals.
    He W; Ye Y; Lu L; Cheng Y; Li Y; Wang Z
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):636-648. PubMed ID: 31021779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.
    Peng F; Liu H; Wang W
    Physiol Meas; 2015 Oct; 36(10):2159-70. PubMed ID: 26334000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motion Artifact Removal for PPG Signals based on Accurate Fundamental Frequency Estimation and Notch Filtering.
    Zhang Q; Xie Q; Wang M; Wang G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2965-2968. PubMed ID: 30441021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noise-Robust Heart Rate Estimation Algorithm from Photoplethysmography Signal with Low Computational Complexity.
    Shin J; Cho J
    J Healthc Eng; 2019; 2019():6283279. PubMed ID: 31249654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.
    Jarchi D; Casson AJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2042-2053. PubMed ID: 28212075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths.
    Lee J; Kim M; Park HK; Kim IY
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise.
    Zhang Z; Pi Z; Liu B
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):522-31. PubMed ID: 25252274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining Adaptive Filter and Phase Vocoder for Heart Rate Monitoring Using Photoplethysmography During Physical Exercise.
    Xie Q; Zhang Q; Wang G; Lian Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3568-3571. PubMed ID: 30441149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unobtrusive heart rate estimation during physical exercise using photoplethysmographic and acceleration data.
    Mullan P; Kanzler CM; Lorch B; Schroeder L; Winkler L; Laich L; Riedel F; Richer R; Luckner C; Leutheuser H; Eskofier BM; Pasluosta C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6114-7. PubMed ID: 26737687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MICROST: A mixed approach for heart rate monitoring during intensive physical exercise using wrist-type PPG Signals.
    Zhu S; Tan K; Zhang X; Liu Z; Liu B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2347-50. PubMed ID: 26736764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities.
    Zhu L; Du D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A solution for co-frequency and low SNR problems in heart rate estimation based on photoplethysmography signals.
    Zhao J; Chen X; Zhang X; Chen X
    Med Biol Eng Comput; 2022 Dec; 60(12):3419-3433. PubMed ID: 36190610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction.
    Zhang Z
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1902-10. PubMed ID: 26186747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals.
    Chung H; Ko H; Lee H; Lee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring Using Wearable Sensors.
    Nathan V; Jafari R
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1834-1846. PubMed ID: 29990023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion artifacts reduction from PPG using cyclic moving average filter.
    Lee J
    Technol Health Care; 2014; 22(3):409-17. PubMed ID: 24704660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Robust Heart Rate Monitoring Scheme Using Photoplethysmographic Signals Corrupted by Intense Motion Artifacts.
    Khan E; Al Hossain F; Uddin SZ; Alam SK; Hasan MK
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):550-62. PubMed ID: 26276979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Adaptive Filter Based Motion Artifact Cancellation Technique Using Multi-Wavelength PPG for Accurate HR Estimation.
    Park P; Lee W; Cho S
    IEEE Trans Biomed Circuits Syst; 2023 Oct; 17(5):1074-1083. PubMed ID: 37708010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Effective Photoplethysmography Heart Rate Estimation Framework Integrating Two-Level Denoising Method and Heart Rate Tracking Algorithm Guided by Finite State Machine.
    Guo J; Chen X; Zhao J; Zhang X; Chen X
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3731-3742. PubMed ID: 35380978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.