BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 30349957)

  • 41. Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography.
    Alqudah AM; Qananwah Q; M K Dagamseh A; Qazan S; Albadarneh A; Alzyout A
    Med Hypotheses; 2020 Oct; 143():109870. PubMed ID: 32470788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive scheduling of acceleration and gyroscope for motion artifact cancelation in photoplethysmography.
    Lee H; Chung H; Ko H; Parisi A; Busacca A; Faes L; Pernice R; Lee J
    Comput Methods Programs Biomed; 2022 Nov; 226():107126. PubMed ID: 36130416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection.
    Chong JW; Dao DK; Salehizadeh SM; McManus DD; Darling CE; Chon KH; Mendelson Y
    Ann Biomed Eng; 2014 Nov; 42(11):2238-50. PubMed ID: 25092422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nine degree of freedom motion estimation for wrist PPG heart rate measurements.
    Galvez AV; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3231-3234. PubMed ID: 31946574
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices.
    Masinelli G; Dell'Agnola F; Valdés AA; Atienza D
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Research on heart rate extraction algorithm in motion state based on normalized least mean square combining ensemble empirical mode decomposition].
    Geng D; Zhao J; Wang C; Dong J; Ning Q; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):71-79. PubMed ID: 32096379
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation.
    Nemcova A; Vargova E; Smisek R; Marsanova L; Smital L; Vitek M
    Biomed Res Int; 2021; 2021():3453007. PubMed ID: 34532501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust heart rate estimation using wrist-based PPG signals in the presence of intense physical activities.
    Chengzhi Zong ; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8078-82. PubMed ID: 26738168
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.
    Warren KM; Harvey JR; Chon KH; Mendelson Y
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959034
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography.
    Firoozabadi R; Helfenbein ED; Babaeizadeh S
    J Electrocardiol; 2017; 50(6):841-846. PubMed ID: 28918214
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Motion artefact reduction of the photoplethysmographic signal in pulse transit time measurement.
    Foo JY; Wilson SJ; Williams GR; Harris M; Cooper DM
    Australas Phys Eng Sci Med; 2004 Dec; 27(4):165-73. PubMed ID: 15712583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heart rate monitoring from wrist-type PPG based on singular spectrum analysis with motion decision.
    Yang Wang ; Zhiwen Liu ; Bin Dong
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3511-3514. PubMed ID: 28269055
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction of Periodic Motion Artifacts in Photoplethysmography.
    Wijshoff RW; Mischi M; Aarts RM
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):196-207. PubMed ID: 27093308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new approach to HR monitoring using photoplethysmographic signals during intensive physical exercise.
    Chen G; Yuan X; Zhang Y; Song X
    Phys Eng Sci Med; 2021 Jun; 44(2):535-543. PubMed ID: 33929712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography.
    Han H; Kim MJ; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1538-41. PubMed ID: 18002262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Smart automated heart health monitoring using photoplethysmography signal classification.
    Raj R; Selvakumar J; Maik V
    Biomed Tech (Berl); 2021 Jun; 66(3):247-256. PubMed ID: 34062637
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Smartwatch Based Atrial Fibrillation Detection from Photoplethysmography Signals.
    Bashar SK; Han D; Ding E; Whitcomb C; McManus DD; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4306-4309. PubMed ID: 31946820
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Double sensor complementary placement method to reduce motion artifacts in PPG using fast independent component analysis.
    Lo FP; Meng MQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3179-3182. PubMed ID: 28268983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating heart rate using wrist-type Photoplethysmography and acceleration sensor while running.
    Fukushima H; Kawanaka H; Bhuiyan MS; Oguri K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2901-4. PubMed ID: 23366531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spot measurement of heart rate based on morphology of PhotoPlethysmoGraphic (PPG) signals.
    Madhan Mohan P; Nagarajan V; Vignesh JC
    J Med Eng Technol; 2017 Feb; 41(2):87-96. PubMed ID: 27609492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.