BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 3034998)

  • 1. Ceruloplasmin, extracellular-superoxide dismutase, and scavenging of superoxide anion radicals.
    Marklund SL
    J Free Radic Biol Med; 1986; 2(4):255-60. PubMed ID: 3034998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new function for ceruloplasmin as an acute-phase reactant in inflammation: a scavenger of superoxide anion radicals.
    Goldstein IM; Kaplan HB; Edelson HS; Weissmann G
    Trans Assoc Am Physicians; 1979; 92():360-9. PubMed ID: 232945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Product of extracellular-superoxide dismutase catalysis.
    Marklund SL
    FEBS Lett; 1985 May; 184(2):237-9. PubMed ID: 3838941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ceruloplasmin: an acute phase reactant that scavenges oxygen-derived free radicals.
    Goldstein IM; Kaplan HB; Edelson HS; Weissmann G
    Ann N Y Acad Sci; 1982; 389():368-79. PubMed ID: 6284006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper complexes of 1,10-phenanthroline and related compounds as superoxide dismutase mimetics.
    Bijloo GJ; van der Goot H; Bast A; Timmerman H
    J Inorg Biochem; 1990 Nov; 40(3):237-44. PubMed ID: 1963439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ceruloplasmin. A scavenger of superoxide anion radicals.
    Goldstein IM; Kaplan HB; Edelson HS; Weissmann G
    J Biol Chem; 1979 May; 254(10):4040-5. PubMed ID: 220229
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.
    Barik A; Mishra B; Shen L; Mohan H; Kadam RM; Dutta S; Zhang HY; Priyadarsini KI
    Free Radic Biol Med; 2005 Sep; 39(6):811-22. PubMed ID: 16109310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does caeruloplasmin dismute superoxide? No.
    Bannister JV; Bannister WH; Hill HA; Mahood JF; Willson RL; Wolfenden BS
    FEBS Lett; 1980 Aug; 118(1):127-9. PubMed ID: 6250904
    [No Abstract]   [Full Text] [Related]  

  • 9. Superoxide dismutase: the first twenty years (1968-1988).
    McCord JM; Fridovich I
    Free Radic Biol Med; 1988; 5(5-6):363-9. PubMed ID: 2855736
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin.
    Samokyszyn VM; Miller DM; Reif DW; Aust SD
    J Biol Chem; 1989 Jan; 264(1):21-6. PubMed ID: 2535839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dismutation of superoxide radicals by ceruloplasmin--details of the mechanism].
    Vasil'ev VB; Kachurin AM; Soroka NV
    Biokhimiia; 1988 Dec; 53(12):2051-8. PubMed ID: 2855027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding.
    Ibrahim HR; Hoq MI; Aoki T
    Int J Biol Macromol; 2007 Dec; 41(5):631-40. PubMed ID: 17919719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the Fenton reaction by the protein caeruloplasmin and other copper complexes. Assessment of ferroxidase and radical scavenging activities.
    Gutteridge JM
    Chem Biol Interact; 1985 Dec; 56(1):113-20. PubMed ID: 3000633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues.
    Dionisi O; Galeotti T; Terranova T; Azzi A
    Biochim Biophys Acta; 1975 Oct; 403(2):292-300. PubMed ID: 241399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mn2+, Co2+, Cu2+ and Zn2+ complexes with two macrocyclic ligands bearing L-lactate-like functions: potentiometric studies and evaluation of superoxide-scavenging properties of the Mn2+ complex.
    Delagrange S; Delgado R; Nepveu F
    J Inorg Biochem; 2000 Jul; 81(1-2):65-71. PubMed ID: 11001433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide dismutase-mimicking activities of dinuclear Cu(II) complexes with ligands containing a tetrathioether-tetraamino moiety.
    Güner S; Karaböcek S
    J Biochem Mol Toxicol; 1998; 12(1):53-9. PubMed ID: 9414487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of zinc on superoxide-dependent hydroxyl radical production in vitro.
    Coudray C; Rachidi S; Favier A
    Biol Trace Elem Res; 1993 Sep; 38(3):273-87. PubMed ID: 7504944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the electrochemistry of cytochrome c to the measurement of superoxide radical production.
    McNeil CJ; Smith KA; Bellavite P; Bannister JV
    Free Radic Res Commun; 1989; 7(2):89-96. PubMed ID: 2553552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Superoxide-scavenging activity of carnosine in the presence of copper and zinc ions].
    Guliaeva NV
    Biokhimiia; 1987 Jul; 52(7):1216-20. PubMed ID: 2822148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper(II)ethylenediaminetetraacetate does disproportionate superoxide.
    Willingham WM; Sorenson JR
    Biochem Biophys Res Commun; 1988 Jan; 150(1):252-8. PubMed ID: 2827669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.