These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Studying the Metabolism of Epithelial-Mesenchymal Plasticity Using the Seahorse XFe96 Extracellular Flux Analyzer. Bhatia S; Thompson EW; Gunter JH Methods Mol Biol; 2021; 2179():327-340. PubMed ID: 32939731 [TBL] [Abstract][Full Text] [Related]
7. Determining Macrophage Polarization upon Metabolic Perturbation. Liu PS; Ho PC Methods Mol Biol; 2019; 1862():173-186. PubMed ID: 30315468 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer. Wei C; Heitmeier M; Hruz PW; Shanmugam M Methods Mol Biol; 2018; 1713():69-75. PubMed ID: 29218518 [TBL] [Abstract][Full Text] [Related]
9. Warburg and Crabtree effects in premalignant Barrett's esophagus cell lines with active mitochondria. Suchorolski MT; Paulson TG; Sanchez CA; Hockenbery D; Reid BJ PLoS One; 2013; 8(2):e56884. PubMed ID: 23460817 [TBL] [Abstract][Full Text] [Related]
10. Bioenergetic analysis of intact mammalian cells using the Seahorse XF24 Extracellular Flux analyzer and a luciferase ATP assay. de Moura MB; Van Houten B Methods Mol Biol; 2014; 1105():589-602. PubMed ID: 24623254 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the role Rab25 in energy metabolism and cancer using extracellular flux analysis and material balance. Mitra S; Molina J; Mills GB; Dennison JB Methods Mol Biol; 2015; 1298():195-205. PubMed ID: 25800844 [TBL] [Abstract][Full Text] [Related]
12. BIOENERGETIC CHARACTERIZATION OF H9C2 CELLS USING THE EXTRACELLULAR FLUX ANALYZER. Scurtu I; Sturza A; Pavel IZ; Popescu R; Privistirescu A; Duicu OM; Muntean DM Rev Med Chir Soc Med Nat Iasi; 2015; 119(2):491-5. PubMed ID: 26204657 [TBL] [Abstract][Full Text] [Related]
13. Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines. Mitov MI; Harris JW; Alstott MC; Zaytseva YY; Evers BM; Butterfield DA Exp Cell Res; 2017 May; 354(2):112-121. PubMed ID: 28342898 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the Role of RARβ Signaling on Cellular Metabolism in Melanoma Using the Seahorse XF Analyzer. Dahl C; Guldberg P; Abildgaard C Methods Mol Biol; 2019; 2019():171-180. PubMed ID: 31359396 [TBL] [Abstract][Full Text] [Related]
16. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism. Plitzko B; Loesgen S Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967 [TBL] [Abstract][Full Text] [Related]
17. Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XF(e)96 Extracellular Flux Analyzer. Pelgrom LR; van der Ham AJ; Everts B Methods Mol Biol; 2016; 1390():273-85. PubMed ID: 26803635 [TBL] [Abstract][Full Text] [Related]
19. Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples. Obeidat YM; Cheng MH; Catandi G; Carnevale E; Chicco AJ; Chen TW Biosens Bioelectron; 2019 May; 133():39-47. PubMed ID: 30909011 [TBL] [Abstract][Full Text] [Related]
20. The Use of Seahorse XF Assays to Interrogate Real-Time Energy Metabolism in Cancer Cell Lines. Caines JK; Barnes DA; Berry MD Methods Mol Biol; 2022; 2508():225-234. PubMed ID: 35737244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]