BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 3035025)

  • 21. A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplates in vitro.
    Burges J; Wray DW; Pizzighella S; Hall Z; Vincent A
    Muscle Nerve; 1990 May; 13(5):407-13. PubMed ID: 2345558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.
    Lennon VA; Lambert EH; Leiby KR; Okarma TB; Talib S
    J Immunol; 1991 Apr; 146(7):2245-8. PubMed ID: 2005394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetylcholine release in myasthenia gravis: regulation at single end-plate level.
    Plomp JJ; Van Kempen GT; De Baets MB; Graus YM; Kuks JB; Molenaar PC
    Ann Neurol; 1995 May; 37(5):627-36. PubMed ID: 7755358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lewis rats given antibodies against denatured acetylcholine receptor become resistant to induction of experimental autoimmune myasthenia gravis.
    Krolick KA; Yeh TM; Edlund SA
    Cell Immunol; 1996 Aug; 172(1):10-20. PubMed ID: 8806801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis.
    Gomez CM; Richman DP
    J Immunol; 1985 Jul; 135(1):234-41. PubMed ID: 3873489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FK506 prevents induction of rat experimental autoimmune myasthenia gravis.
    Yoshikawa H; Iwasa K; Satoh K; Takamori M
    J Autoimmun; 1997 Feb; 10(1):11-6. PubMed ID: 9080295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specificities of antibody to acetylcholine receptor in rabbits with experimental myasthenia gravis.
    Ueno S; Kang J; Takeuchi H; Takahashi M; Tarui S
    Clin Exp Immunol; 1980 Jul; 41(1):13-8. PubMed ID: 6777100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Congenital myasthenic syndromes: II. Syndrome attributed to abnormal interaction of acetylcholine with its receptor.
    Uchitel O; Engel AG; Walls TJ; Nagel A; Atassi MZ; Bril V
    Muscle Nerve; 1993 Dec; 16(12):1293-301. PubMed ID: 8232384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro blockade of neuromuscular transmission by monoclonal anti-acetylcholine receptor antibodies.
    Maselli RA; Jow B; Richman DP; Nelson DJ
    Ann N Y Acad Sci; 1988; 540():523-4. PubMed ID: 2849901
    [No Abstract]   [Full Text] [Related]  

  • 30. Autoantibodies in myasthenia gravis: demonstration of anti-motor endplate antibody and anti-muscle membrane antibody using membrane immunofluorescence technique.
    Arimori S; Tada S; Nakata Y; Kobashi H; Ichikawa Y
    Acta Med Okayama; 1975 Dec; 29(6):397-404. PubMed ID: 132840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis.
    Ruff RL; Lennon VA
    Ann Neurol; 1998 Mar; 43(3):370-9. PubMed ID: 9506554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myasthenia gravis without acetylcholine-receptor antibody: a distinct disease entity.
    Mossman S; Vincent A; Newsom-Davis J
    Lancet; 1986 Jan; 1(8473):116-9. PubMed ID: 2417076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased gene expression of acetylcholine receptor and myogenic factors in passively transferred experimental autoimmune myasthenia gravis.
    Asher O; Kues WA; Witzemann V; Tzartos SJ; Fuchs S; Souroujon MC
    J Immunol; 1993 Dec; 151(11):6442-50. PubMed ID: 8245477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera.
    Tzartos SJ; Sophianos D; Efthimiadis A
    J Immunol; 1985 Apr; 134(4):2343-9. PubMed ID: 3973387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seronegative myasthenia gravis.
    Vincent A; McConville J; Farrugia ME; Newsom-Davis J
    Semin Neurol; 2004 Mar; 24(1):125-33. PubMed ID: 15229799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevention of experimental autoimmune myasthenia gravis by a monoclonal antibody to a complementary peptide for the main immunogenic region of the acetylcholine receptors.
    Araga S; Galin FS; Kishimoto M; Adachi A; Blalock JB
    J Immunol; 1996 Jul; 157(1):386-92. PubMed ID: 8683141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive transfer of the Lambert-Eaton myasthenic syndrome: neuromuscular transmission in mice injected with plasma.
    Kim YI
    Muscle Nerve; 1985 Feb; 8(2):162-72. PubMed ID: 2997605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental myasthenia: lack of correlation between the autoantibody titer and the reduction of acetylcholine-controlled ionic channels measured at functioning endplates.
    Hohlfeld R; Sterz R; Kalies I; Wekerle H; Peper K
    Muscle Nerve; 1983 Feb; 6(2):160-3. PubMed ID: 6304508
    [No Abstract]   [Full Text] [Related]  

  • 39. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis.
    Kaminski HJ; Li Z; Richmonds C; Lin F; Medof ME
    Exp Neurol; 2004 Oct; 189(2):333-42. PubMed ID: 15380483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental autoimmune myasthenia gravis: can pretreatment with 125I-labeled receptor prevent functional damage at the neuromuscular junction?
    Sterz RK; Biro G; Rajki K; Filipp G; Peper K
    J Immunol; 1985 Feb; 134(2):841-6. PubMed ID: 2578165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.