BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 3035025)

  • 61. Experimental autoimmune myasthenia gravis in the mouse.
    Wu B; Goluszko E; Huda R; Tüzün E; Christadoss P
    Curr Protoc Immunol; 2013; Chapter 15():Unit 15.8.. PubMed ID: 23392639
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Immunisation with Torpedo acetylcholine receptor.
    Elfman L
    Prog Neurobiol; 1984; 23(1-2):39-62. PubMed ID: 6097937
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interaction of myasthenic immunoglobulins and cholinergic agonists on acetylcholine receptors of rat myotubes.
    Ashizawa T; Elias SB; Appel SH
    Ann Neurol; 1982 Jan; 11(1):22-7. PubMed ID: 6277235
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Observation on the changes in the frequency of end-plate potentials evoked by sera with different antibodies from patients with myasthenia gravis in nerve-muscle preparation of rats].
    Lu C
    Zhonghua Shen Jing Jing Shen Ke Za Zhi; 1992 Feb; 25(1):44-6, 63. PubMed ID: 1317284
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Antibodies to motor endplates demonstrated with the immunofluorescence technique.
    Sondag-Tschroots IR; Schulz-Raateland RC; van Walbeek HK; Feltkamp TE
    Clin Exp Immunol; 1979 Aug; 37(2):323-7. PubMed ID: 387311
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The nicotinic acetylcholine receptor: structure and autoimmune pathology.
    Conti-Tronconi BM; McLane KE; Raftery MA; Grando SA; Protti MP
    Crit Rev Biochem Mol Biol; 1994; 29(2):69-123. PubMed ID: 8026215
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis.
    Lennon VA; Seybold ME; Lindstrom JM; Cochrane C; Ulevitch R
    J Exp Med; 1978 Apr; 147(4):973-83. PubMed ID: 206648
    [TBL] [Abstract][Full Text] [Related]  

  • 68. End-plate potentials in experimental autoimmune myasthenia gravis in rats.
    Lambert EH; Lindstrom JM; Lennon VA
    Ann N Y Acad Sci; 1976; 274():300-18. PubMed ID: 1066990
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Properties of end-plate channels in rats immunized against acetylcholine receptors.
    Alemà S; Cull-Candy SG; Miledi R; Trautmann A
    J Physiol; 1981 Feb; 311():251-66. PubMed ID: 6267252
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Factors contributing to failure of neuromuscular transmission in myasthenia gravis and the special case of the extraocular muscles.
    Serra A; Ruff R; Kaminski H; Leigh RJ
    Ann N Y Acad Sci; 2011 Sep; 1233():26-33. PubMed ID: 21950972
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Antigenic difference of acetylcholine receptor between single and multiple form endplates of human extraocular muscle.
    Oda K; Shibasaki H
    Brain Res; 1988 May; 449(1-2):337-40. PubMed ID: 2456129
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reduction of miniature end-plate potential amplitude in extraocular and limb muscles in an animal model of myasthenia gravis.
    Zahm DS; Kim YI; Liu HH; Johns TR
    Exp Neurol; 1983 Apr; 80(1):258-62. PubMed ID: 6832272
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The immunopathological basis of acetylcholine receptor deficiency in myasthenia gravis.
    Engel AG
    Prog Brain Res; 1979; 49():423-34. PubMed ID: 515440
    [No Abstract]   [Full Text] [Related]  

  • 74. Region of peptide 125-147 of acetylcholine receptor alpha subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis, T-cell immunity, and modulating autoantibodies.
    Lennon VA; McCormick DJ; Lambert EH; Griesmann GE; Atassi MZ
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8805-9. PubMed ID: 3878521
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ocular and generalized myasthenia gravis induced by human acetylcholine receptor γ subunit immunization.
    Wu X; Tuzun E; Li J; Xiao T; Saini SS; Qi H; Allman W; Christadoss P
    Muscle Nerve; 2012 Feb; 45(2):209-16. PubMed ID: 22246876
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The relationship between anti-acetylcholine receptor antibody levels and neuromuscular function in chronically myasthenic rats.
    Gallant PE
    J Neurol Sci; 1982 Apr; 54(1):129-41. PubMed ID: 6281392
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Myasthenia gravis: a personal view of pathogenesis and mechanism, part 2.
    Simpson JA
    Muscle Nerve; 1978; 1(2):151-6. PubMed ID: 220530
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of D-penicillamine on neuromuscular transmission in rats.
    Aldrich MS; Kim YI; Sanders DB
    Muscle Nerve; 1979; 2(3):180-5. PubMed ID: 228187
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Passive transfer of myasthenia gravis by immunoglobulins: lack of correlation between AChR with antibody bound, acetylcholine receptor loss and transmission defect.
    Mossman S; Vincent A; Newsom-Davis J
    J Neurol Sci; 1988 Mar; 84(1):15-28. PubMed ID: 2835437
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Utrophin abundance is reduced at neuromuscular junctions of patients with both inherited and acquired acetylcholine receptor deficiencies.
    Slater CR; Young C; Wood SJ; Bewick GS; Anderson LV; Baxter P; Fawcett PR; Roberts M; Jacobson L; Kuks J; Vincent A; Newsom-Davis J
    Brain; 1997 Sep; 120 ( Pt 9)():1513-31. PubMed ID: 9313636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.