These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 30350548)

  • 21. Lithium Fluoride Coated Silicon Nanocolumns as Anodes for Lithium Ion Batteries.
    Lin J; Peng H; Kim JH; Wygant BR; Meyerson ML; Rodriguez R; Liu Y; Kawashima K; Gu D; Peng DL; Guo H; Heller A; Mullins CB
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18465-18472. PubMed ID: 32223176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte.
    Domi Y; Usui H; Yamaguchi K; Yodoya S; Sakaguchi H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2950-2960. PubMed ID: 30608119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells.
    Nölle R; Achazi AJ; Kaghazchi P; Winter M; Placke T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28187-28198. PubMed ID: 30044617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes.
    Kim GT; Kennedy T; Brandon M; Geaney H; Ryan KM; Passerini S; Appetecchi GB
    ACS Nano; 2017 Jun; 11(6):5933-5943. PubMed ID: 28530820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the Mg-Si Binary System via Combinatorial Sputter Deposition As High Energy Density Anodes for Lithium-Ion Batteries.
    Schmuelling G; Winter M; Placke T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20124-33. PubMed ID: 26313948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.
    Zhang X; Qiu X; Kong D; Zhou L; Li Z; Li X; Zhi L
    ACS Nano; 2017 Jul; 11(7):7476-7484. PubMed ID: 28692250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries.
    Wu Q; Shi B; Bareño J; Liu Y; Maroni VA; Zhai D; Dees DW; Lu W
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3487-3494. PubMed ID: 29298378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Well-Dispersed Bi nanoparticles for promoting the lithium storage performance of Si Anode: Effect of the bridging Bi nanoparticles.
    Li D; Pan K; Li A; Jiang J; Wu Y; Li J; Zheng F; Xie F; Wang H; Pan Q
    J Colloid Interface Sci; 2024 Apr; 659():611-620. PubMed ID: 38198938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lithium Titanate Matrix-Supported Nanocrystalline Silicon Film as an Anode for Lithium-Ion Batteries.
    Yu Z; Tian B; Li Y; Fan D; Yang D; Zhu G; Cai M; Yan DL
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):534-540. PubMed ID: 30525416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Situ Room-Temperature Cross-Linked Highly Branched Biopolymeric Binder Based on the Diels-Alder Reaction for High-Performance Silicon Anodes in Lithium-Ion Batteries.
    Cai Z; Hu S; Wei Y; Huang T; Yu A; Zhang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56095-56108. PubMed ID: 34727688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
    Rong J; Masarapu C; Ni J; Zhang Z; Wei B
    ACS Nano; 2010 Aug; 4(8):4683-90. PubMed ID: 20731447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-Organic Frameworks-Derived Mesoporous Si/SiO
    Majeed MK; Ma G; Cao Y; Mao H; Ma X; Ma W
    Chemistry; 2019 Sep; 25(51):11991-11997. PubMed ID: 31290576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface SiO
    Schnabel M; Harvey SP; Arca E; Stetson C; Teeter G; Ban C; Stradins P
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27017-27028. PubMed ID: 32407075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dealloying Synthesis of Silicon Nanotubes for High-Performance Lithium Ion Batteries.
    Zhao J; Wei W; Xu N; Wang X; Chang L; Wang L; Fang L; Le Z; Nie P
    Chemphyschem; 2022 May; 23(9):e202100832. PubMed ID: 35233890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
    McDowell MT; Lee SW; Nix WD; Cui Y
    Adv Mater; 2013 Sep; 25(36):4966-85. PubMed ID: 24038172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-performance Ti-doped ZnS thin film anode for lithium-ion batteries.
    Jiang H; Zeng Y; Zhang J; Chen Y; Guo H; Li L; Zhang Y
    Nanotechnology; 2022 Aug; 33(45):. PubMed ID: 35901617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.