BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1160 related articles for article (PubMed ID: 30350585)

  • 1. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers.
    Wahsner J; Gale EM; Rodríguez-Rodríguez A; Caravan P
    Chem Rev; 2019 Jan; 119(2):957-1057. PubMed ID: 30350585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action.
    Caravan P
    Acc Chem Res; 2009 Jul; 42(7):851-62. PubMed ID: 19222207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging.
    Werner EJ; Datta A; Jocher CJ; Raymond KN
    Angew Chem Int Ed Engl; 2008; 47(45):8568-80. PubMed ID: 18825758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents.
    Datta A; Raymond KN
    Acc Chem Res; 2009 Jul; 42(7):938-47. PubMed ID: 19505089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioresponsive, cell-penetrating, and multimeric MR contrast agents.
    Major JL; Meade TJ
    Acc Chem Res; 2009 Jul; 42(7):893-903. PubMed ID: 19537782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of molecular descriptors in the design of gadolinium (III) chelates as MRI contrast agents.
    Maiocchi A
    Mini Rev Med Chem; 2003 Dec; 3(8):845-59. PubMed ID: 14529503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environment-sensitive and enzyme-sensitive MR contrast agents.
    Querol M; Bogdanov A
    Handb Exp Pharmacol; 2008; (185 Pt 2):37-57. PubMed ID: 18626598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tris(pyrone) chelates of Gd(III) as high solubility MRI-CA.
    Puerta DT; Botta M; Jocher CJ; Werner EJ; Avedano S; Raymond KN; Cohen SM
    J Am Chem Soc; 2006 Feb; 128(7):2222-3. PubMed ID: 16478170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARACEST agents: modulating MRI contrast via water proton exchange.
    Zhang S; Merritt M; Woessner DE; Lenkinski RE; Sherry AD
    Acc Chem Res; 2003 Oct; 36(10):783-90. PubMed ID: 14567712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cleavable β-cyclodextrin nanocapsules incorporating Gd(III)-chelates as bioresponsive MRI probes.
    Martinelli J; Fekete M; Tei L; Botta M
    Chem Commun (Camb); 2011 Mar; 47(11):3144-6. PubMed ID: 21270985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review.
    Port M; Idée JM; Medina C; Robic C; Sabatou M; Corot C
    Biometals; 2008 Aug; 21(4):469-90. PubMed ID: 18344005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gadolinium Metallofullerene-Based Activatable Contrast Agent for Tumor Signal Amplification and Monitoring of Drug Release.
    Wang S; Zhou Z; Wang Z; Liu Y; Jacobson O; Shen Z; Fu X; Chen ZY; Chen X
    Small; 2019 Apr; 15(16):e1900691. PubMed ID: 30913380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance.
    Runge VM; Ai T; Hao D; Hu X
    Invest Radiol; 2011 Dec; 46(12):807-16. PubMed ID: 22094366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Paramagnetic Graphene Quantum Dots with Enhanced Relaxivity for Tumor Imaging.
    Yang Y; Chen S; Li H; Yuan Y; Zhang Z; Xie J; Hwang DW; Zhang A; Liu M; Zhou X
    Nano Lett; 2019 Jan; 19(1):441-448. PubMed ID: 30560672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Gadolinium(III) Complex Based on the Thymine Nucleobase with Properties Suitable for Magnetic Resonance Imaging.
    Orts-Arroyo M; Ten-Esteve A; Ginés-Cárdenas S; Castro I; Martí-Bonmatí L; Martínez-Lillo J
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties.
    Ladd DL; Hollister R; Peng X; Wei D; Wu G; Delecki D; Snow RA; Toner JL; Kellar K; Eck J; Desai VC; Raymond G; Kinter LB; Desser TS; Rubin DL
    Bioconjug Chem; 1999; 10(3):361-70. PubMed ID: 10346865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gadolinium meets medicinal chemistry: MRI contrast agent development.
    Zhang Z; Nair SA; McMurry TJ
    Curr Med Chem; 2005; 12(7):751-78. PubMed ID: 15853710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An MRI contrast agent based on a zwitterionic metal-chelating polymer for hepatorenal angiography and tumor imaging.
    Zhang P; Wang Z; Wang Y; Wang Y; Liu C; Cao K; Lu Y; Behboodpour L; Hou Y; Gao M
    J Mater Chem B; 2020 Aug; 8(31):6956-6963. PubMed ID: 32490870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications.
    Helm L
    Future Med Chem; 2010 Mar; 2(3):385-96. PubMed ID: 21426173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.