These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30350656)

  • 1. Topological Properties of Gapped Graphene Nanoribbons with Spatial Symmetries.
    Lin KS; Chou MY
    Nano Lett; 2018 Nov; 18(11):7254-7260. PubMed ID: 30350656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological Phases in Cove-Edged and Chevron Graphene Nanoribbons: Geometric Structures, [Formula: see text]
    Lee YL; Zhao F; Cao T; Ihm J; Louie SG
    Nano Lett; 2018 Nov; 18(11):7247-7253. PubMed ID: 30251545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological band engineering of graphene nanoribbons.
    Rizzo DJ; Veber G; Cao T; Bronner C; Chen T; Zhao F; Rodriguez H; Louie SG; Crommie MF; Fischer FR
    Nature; 2018 Aug; 560(7717):204-208. PubMed ID: 30089918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains.
    Cao T; Zhao F; Louie SG
    Phys Rev Lett; 2017 Aug; 119(7):076401. PubMed ID: 28949674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology Classification using Chiral Symmetry and Spin Correlations in Graphene Nanoribbons.
    Jiang J; Louie SG
    Nano Lett; 2021 Jan; 21(1):197-202. PubMed ID: 33320677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological Phases in Graphene Nanoribbons Tuned by Electric Fields.
    Zhao F; Cao T; Louie SG
    Phys Rev Lett; 2021 Oct; 127(16):166401. PubMed ID: 34723587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators.
    Lin Z; Qin W; Zeng J; Chen W; Cui P; Cho JH; Qiao Z; Zhang Z
    Nano Lett; 2017 Jul; 17(7):4013-4018. PubMed ID: 28534404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI.
    Rusinov IP; Menshchikova TV; Isaeva A; Eremeev SV; Koroteev YM; Vergniory MG; Echenique PM; Chulkov EV
    Sci Rep; 2016 Feb; 6():20734. PubMed ID: 26864814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic analogues of three-dimensional topological insulators.
    He C; Lai HS; He B; Yu SY; Xu X; Lu MH; Chen YF
    Nat Commun; 2020 May; 11(1):2318. PubMed ID: 32385317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the Topological Energy Band in Graphene Nanoribbons.
    Sun Q; Yan Y; Yao X; Müllen K; Narita A; Fasel R; Ruffieux P
    J Phys Chem Lett; 2021 Sep; 12(35):8679-8684. PubMed ID: 34472868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator.
    Mandal PS; Springholz G; Volobuev VV; Caha O; Varykhalov A; Golias E; Bauer G; Rader O; Sánchez-Barriga J
    Nat Commun; 2017 Oct; 8(1):968. PubMed ID: 29042565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topologically enhanced nonlinear optical response of graphene nanoribbon heterojunctions.
    Deng H; Qu Z; He Y; Huang C; Panoiu NC; Ye F
    Quantum Front; 2023; 2(1):11. PubMed ID: 37780230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflection-Symmetric Second-Order Topological Insulators and Superconductors.
    Langbehn J; Peng Y; Trifunovic L; von Oppen F; Brouwer PW
    Phys Rev Lett; 2017 Dec; 119(24):246401. PubMed ID: 29286744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Out of equilibrium chiral higher order topological insulator on a
    Bhat RV; Bera S
    J Phys Condens Matter; 2021 Apr; 33(16):. PubMed ID: 33752196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary.
    Sun Q; Gröning O; Overbeck J; Braun O; Perrin ML; Borin Barin G; El Abbassi M; Eimre K; Ditler E; Daniels C; Meunier V; Pignedoli CA; Calame M; Fasel R; Ruffieux P
    Adv Mater; 2020 Mar; 32(12):e1906054. PubMed ID: 32048409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological phase transition in chiral graphene nanoribbons: from edge bands to end states.
    Li J; Sanz S; Merino-Díez N; Vilas-Varela M; Garcia-Lekue A; Corso M; de Oteyza DG; Frederiksen T; Peña D; Pascual JI
    Nat Commun; 2021 Sep; 12(1):5538. PubMed ID: 34545075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring strong and weak topological states on isostructural substitutions in TlBiSe[Formula: see text].
    Phutela A; Bhumla P; Jain M; Bhattacharya S
    Sci Rep; 2022 Dec; 12(1):21970. PubMed ID: 36539475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New types of topological superconductors under local magnetic symmetries.
    Zou J; Xie Q; Song Z; Xu G
    Natl Sci Rev; 2021 May; 8(5):nwaa169. PubMed ID: 34691633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetism of Topological Boundary States Induced by Boron Substitution in Graphene Nanoribbons.
    Friedrich N; Brandimarte P; Li J; Saito S; Yamaguchi S; Pozo I; Peña D; Frederiksen T; Garcia-Lekue A; Sánchez-Portal D; Pascual JI
    Phys Rev Lett; 2020 Oct; 125(14):146801. PubMed ID: 33064521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.