BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30350704)

  • 1. Reversible Condensation of Mucins into Nanoparticles.
    Yan H; Chircov C; Zhong X; Winkeljann B; Dobryden I; Nilsson HE; Lieleg O; Claesson PM; Hedberg Y; Crouzier T
    Langmuir; 2018 Nov; 34(45):13615-13625. PubMed ID: 30350704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronic Acid Molecular Weight-Dependent Modulation of Mucin Nanostructure for Potential Mucosal Therapeutic Applications.
    Hansen IM; Ebbesen MF; Kaspersen L; Thomsen T; Bienk K; Cai Y; Malle BM; Howard KA
    Mol Pharm; 2017 Jul; 14(7):2359-2367. PubMed ID: 28499338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buccal delivery of low molecular weight heparin by cationic polymethacrylate nanoparticles.
    Mouftah S; Abdel-Mottaleb MMA; Lamprecht A
    Int J Pharm; 2016 Dec; 515(1-2):565-574. PubMed ID: 27773855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mucus barrier-triggered disassembly of siRNA nanocarriers.
    Thomsen TB; Li L; Howard KA
    Nanoscale; 2014 Nov; 6(21):12547-54. PubMed ID: 25179224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purified mucins in drug delivery research.
    Marczynski M; Kimna C; Lieleg O
    Adv Drug Deliv Rev; 2021 Nov; 178():113845. PubMed ID: 34166760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Gel-forming mucins structure governs mucus gels viscoelasticity].
    Demouveaux B; Gouyer V; Magnien M; Plet S; Gottrand F; Narita T; Desseyn JL
    Med Sci (Paris); 2018 Oct; 34(10):806-812. PubMed ID: 30451674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.
    Ramsey KA; Rushton ZL; Ehre C
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gel-forming mucin interactome drives mucus viscoelasticity.
    Demouveaux B; Gouyer V; Gottrand F; Narita T; Desseyn JL
    Adv Colloid Interface Sci; 2018 Feb; 252():69-82. PubMed ID: 29329667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear and extensional rheological characterisation of mucin solutions.
    Ahmad M; Ritzoulis C; Chen J
    Colloids Surf B Biointerfaces; 2018 Nov; 171():614-621. PubMed ID: 30103150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized positive nanoparticles reduce mucin swelling and dispersion.
    Chen EY; Wang YC; Chen CS; Chin WC
    PLoS One; 2010 Nov; 5(11):e15434. PubMed ID: 21085670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucin Thin Layers: A Model for Mucus-Covered Tissues.
    Rondelli V; Cola ED; Koutsioubas A; Alongi J; Ferruti P; Ranucci E; Brocca P
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31362433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of thiol reagents on the structure of mucus glycoproteins (mucins)].
    Zheleznaia LA; Denisova EA; Deshcherevskaia NP; Gerasimov VS
    Biofizika; 1996; 41(1):198-204. PubMed ID: 8714471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental and theoretical approach to understand the interaction between particles and mucosal tissues.
    Arzi RS; Davidovich-Pinhas M; Cohen N; Sosnik A
    Acta Biomater; 2023 Mar; 158():449-462. PubMed ID: 36596435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of particle translocation through mucin hydrogels.
    Lieleg O; Vladescu I; Ribbeck K
    Biophys J; 2010 May; 98(9):1782-9. PubMed ID: 20441741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of mucin secretion: I. The role of intragranular charge shielding.
    Verdugo P; Deyrup-Olsen I; Aitken M; Villalon M; Johnson D
    J Dent Res; 1987 Feb; 66(2):506-8. PubMed ID: 3476567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The properties of the mucus barrier, a unique gel--how can nanoparticles cross it?
    Pearson JP; Chater PI; Wilcox MD
    Ther Deliv; 2016; 7(4):229-44. PubMed ID: 27010985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oral cavity as a biological barrier system: design of an advanced buccal in vitro permeability model.
    Teubl BJ; Absenger M; Fröhlich E; Leitinger G; Zimmer A; Roblegg E
    Eur J Pharm Biopharm; 2013 Jun; 84(2):386-93. PubMed ID: 23291061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier.
    Li LD; Crouzier T; Sarkar A; Dunphy L; Han J; Ribbeck K
    Biophys J; 2013 Sep; 105(6):1357-65. PubMed ID: 24047986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of the mucus barrier by topically applied exogenous particles.
    McGill SL; Smyth HD
    Mol Pharm; 2010 Dec; 7(6):2280-8. PubMed ID: 20919744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.