BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 30350736)

  • 1. Production of acoustic radiation force using ultrasound: methods and applications.
    Urban MW
    Expert Rev Med Devices; 2018 Nov; 15(11):819-834. PubMed ID: 30350736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Radiation Force Based Ultrasound Elasticity Imaging for Biomedical Applications.
    Wang L
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic Radiation Force: A Review of Four Mechanisms for Biomedical Applications.
    Sarvazyan AP; Rudenko OV; Fatemi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3261-3269. PubMed ID: 34520353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of biomedical applications of acoustic radiation force.
    Sarvazyan A
    Ultrasonics; 2010 Feb; 50(2):230-4. PubMed ID: 19880152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifocal acoustic radiation force-based reverberant optical coherence elastography for evaluation of ocular globe biomechanical properties.
    Mekonnen T; Zevallos-Delgado C; Singh M; Aglyamov SR; Larin KV
    J Biomed Opt; 2023 Sep; 28(9):095001. PubMed ID: 37701876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular actuators for genetically selective acoustic manipulation of cells.
    Wu D; Baresch D; Cook C; Ma Z; Duan M; Malounda D; Maresca D; Abundo MP; Lee J; Shivaei S; Mittelstein DR; Qiu T; Fischer P; Shapiro MG
    Sci Adv; 2023 Feb; 9(8):eadd9186. PubMed ID: 36812320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of acoustic radiation force beam shape and location on wave spectral content for arterial dispersion ultrasound vibrometry.
    Capriotti M; Roy T; Hugenberg NR; Harrigan H; Lee HC; Aquino W; Guddati M; Greenleaf JF; Urban MW
    Phys Med Biol; 2022 Jun; 67(13):. PubMed ID: 35654033
    [No Abstract]   [Full Text] [Related]  

  • 9. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
    Carrascal CA; Aristizabal S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):222-32. PubMed ID: 26742131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ultrasound with acoustic radiation force on rabbit lung tissue: a preliminary study.
    Takayama N; Ishiguro Y; Taniguchi N; Akai K; Sasanuma H; Yasuda Y; Nitta N; Akiyama I
    J Med Ultrason (2001); 2016 Oct; 43(4):481-5. PubMed ID: 27401323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.
    Li R; Elson DS; Dunsby C; Eckersley R; Tang MX
    Opt Express; 2011 Apr; 19(8):7299-311. PubMed ID: 21503041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomedical applications of radiation force of ultrasound: historical roots and physical basis.
    Sarvazyan AP; Rudenko OV; Nyborg WL
    Ultrasound Med Biol; 2010 Sep; 36(9):1379-94. PubMed ID: 20800165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical tracking of superficial dynamics from an acoustic radiation force-induced excitation.
    Bouchard RR; Van Soest G; Trahey GE; Van Der Steen AF
    Ultrason Imaging; 2009 Jan; 31(1):17-30. PubMed ID: 19507680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR acoustic radiation force imaging: in vivo comparison to ultrasound motion tracking.
    Huang Y; Curiel L; Kukic A; Plewes DB; Chopra R; Hynynen K
    Med Phys; 2009 Jun; 36(6):2016-20. PubMed ID: 19610290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic simulation of viscoelastic soft tissue in acoustic radiation force creep imaging.
    Zhao X; Pelegri AA
    J Biomech Eng; 2014 Sep; 136(9):094502. PubMed ID: 24975997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control.
    Bell MA; Kumar S; Kuo L; Sen HT; Iordachita I; Kazanzides P
    IEEE Trans Biomed Eng; 2016 Jul; 63(7):1517-24. PubMed ID: 26552071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach.
    Samandari M; Abrinia K; Sanati-Nezhad A
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.
    Wang CW; Perez MJ; Helmke BP; Viola F; Lawrence MB
    PLoS One; 2015; 10(6):e0128799. PubMed ID: 26042775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.