BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30350920)

  • 1. Optimized Continuous Multicolumn Chromatography Enables Increased Productivities and Cost Savings by Employing More Columns.
    Pagkaliwangan M; Hummel J; Gjoka X; Bisschops M; Schofield M
    Biotechnol J; 2019 Feb; 14(2):e1800179. PubMed ID: 30350920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of batch and continuous multi-column protein A capture processes by optimal design.
    Baur D; Angarita M; Müller-Späth T; Steinebach F; Morbidelli M
    Biotechnol J; 2016 Jul; 11(7):920-31. PubMed ID: 26992151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving affinity chromatography resin efficiency using semi-continuous chromatography.
    Mahajan E; George A; Wolk B
    J Chromatogr A; 2012 Mar; 1227():154-62. PubMed ID: 22265178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.
    Angarita M; Müller-Späth T; Baur D; Lievrouw R; Lissens G; Morbidelli M
    J Chromatogr A; 2015 Apr; 1389():85-95. PubMed ID: 25748537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous bind-and-elute protein A capture chromatography: Optimization under process scale column constraints and comparison to batch operation.
    Kaltenbrunner O; Diaz L; Hu X; Shearer M
    Biotechnol Prog; 2016 Jul; 32(4):938-48. PubMed ID: 27111828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture.
    Baur D; Angarita M; Müller-Späth T; Morbidelli M
    Biotechnol J; 2016 Jan; 11(1):135-45. PubMed ID: 26308369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.
    Pollock J; Bolton G; Coffman J; Ho SV; Bracewell DG; Farid SS
    J Chromatogr A; 2013 Apr; 1284():17-27. PubMed ID: 23453463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Single-Column Batch and Multicolumn Continuous Protein A Chromatography and Performance Comparison Based on Mechanistic Model.
    Guo J; Jin M; Kanani D
    Biotechnol J; 2020 Oct; 15(10):e2000192. PubMed ID: 32663374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tandem laboratory scale protein purification process using Protein A affinity and anion exchange chromatography operated in a weak partitioning mode.
    Shamashkin M; Godavarti R; Iskra T; Coffman J
    Biotechnol Bioeng; 2013 Oct; 110(10):2655-63. PubMed ID: 23633385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes.
    Gjoka X; Rogler K; Martino RA; Gantier R; Schofield M
    J Chromatogr A; 2015 Oct; 1416():38-46. PubMed ID: 26363944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viral clearance capacity by continuous Protein A chromatography step using Sequential MultiColumn Chromatography.
    Goussen C; Goldstein L; Brèque C; You B; Boyer S; Bataille D; Burlot L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122056. PubMed ID: 32315973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model assisted comparison of Protein A resins and multi-column chromatography for capture processes.
    Baur D; Angelo JM; Chollangi S; Xu X; Müller-Späth T; Zhang N; Ghose S; Li ZJ; Morbidelli M
    J Biotechnol; 2018 Nov; 285():64-73. PubMed ID: 30165118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based process development and evaluation of twin-column continuous capture processes with Protein A affinity resin.
    Sun YN; Shi C; Zhang QL; Yao SJ; Slater NKH; Lin DQ
    J Chromatogr A; 2020 Aug; 1625():461300. PubMed ID: 32709343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Protein A affinity resins for twin-column continuous capture processes: Process performance and resin characteristics.
    Sun YN; Shi C; Zhang QL; Slater NKH; Jungbauer A; Yao SJ; Lin DQ
    J Chromatogr A; 2021 Sep; 1654():462454. PubMed ID: 34407469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model based adaptive control of a continuous capture process for monoclonal antibodies production.
    Steinebach F; Angarita M; Karst DJ; Müller-Späth T; Morbidelli M
    J Chromatogr A; 2016 Apr; 1444():50-6. PubMed ID: 27046002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma irradiating chromatography columns enables bioburden-free integrated continuous biomanufacturing.
    Varner C; Patil R; Godawat R; Warikoo V; Konstantinov K; Brower KP
    Biotechnol J; 2021 Apr; 16(4):e2000298. PubMed ID: 33314754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.
    Gjoka X; Gantier R; Schofield M
    J Biotechnol; 2017 Jan; 242():11-18. PubMed ID: 27939321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear flow-velocity gradient chromatography-An efficient method for increasing the process efficiency of batch and continuous capture chromatography of proteins.
    Chen CS; Ando K; Yoshimoto N; Yamamoto S
    Biotechnol Bioeng; 2021 Mar; 118(3):1262-1272. PubMed ID: 33283261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up.
    Girard V; Hilbold NJ; Ng CK; Pegon L; Chahim W; Rousset F; Monchois V
    J Biotechnol; 2015 Nov; 213():65-73. PubMed ID: 25962790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing protein A productivity and resin utilization within integrated or intensified processes.
    Brinkmann A; Elouafiq S
    Biotechnol Bioeng; 2021 Sep; 118(9):3359-3366. PubMed ID: 33638385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.