BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30350921)

  • 1. Scale-Down Model Development in ambr systems: An Industrial Perspective.
    Sandner V; Pybus LP; McCreath G; Glassey J
    Biotechnol J; 2019 Apr; 14(4):e1700766. PubMed ID: 30350921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-down model qualification of ambr® 250 high-throughput mini-bioreactor system for two commercial-scale mAb processes.
    Manahan M; Nelson M; Cacciatore JJ; Weng J; Xu S; Pollard J
    Biotechnol Prog; 2019 Nov; 35(6):e2870. PubMed ID: 31207168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopy integration to miniature bioreactors and large scale production bioreactors-Increasing current capabilities and model transfer.
    Rowland-Jones RC; Graf A; Woodhams A; Diaz-Fernandez P; Warr S; Soeldner R; Finka G; Hoehse M
    Biotechnol Prog; 2021 Jan; 37(1):e3074. PubMed ID: 32865874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development.
    Xu P; Clark C; Ryder T; Sparks C; Zhou J; Wang M; Russell R; Scott C
    Biotechnol Prog; 2017 Mar; 33(2):478-489. PubMed ID: 27977912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.
    Janakiraman V; Kwiatkowski C; Kshirsagar R; Ryll T; Huang YM
    Biotechnol Prog; 2015; 31(6):1623-32. PubMed ID: 26317495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and optimization of a high-throughput mimic perfusion model in ambr
    Jin L; Wang ZS; Cao Y; Sun RQ; Zhou H; Cao RY
    Biotechnol Lett; 2021 Feb; 43(2):423-433. PubMed ID: 33185810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization.
    Velez-Suberbie ML; Betts JPJ; Walker KL; Robinson C; Zoro B; Keshavarz-Moore E
    Biotechnol Prog; 2018 Jan; 34(1):58-68. PubMed ID: 28748655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis for the scale-down of a CHO cell fed-batch process.
    Alsayyari AA; Pan X; Dalm C; van der Veen JW; Vriezen N; Hageman JA; Wijffels RH; Martens DE
    J Biotechnol; 2018 Aug; 279():61-72. PubMed ID: 29800599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in-silico analysis of hydrodynamics and gas mass transfer characteristics in scale-down models for mammalian cell cultures.
    Anand A; McCahill M; Thomas J; Sood A; Kinross J; Dasgupta A; Rajendran A
    J Biotechnol; 2024 Jun; 388():96-106. PubMed ID: 38642816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ambr
    Warr SRC
    Methods Mol Biol; 2020; 2095():43-67. PubMed ID: 31858462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel, high-throughput screening tool for efficient perfusion-based cell culture process development.
    Gagliardi TM; Chelikani R; Yang Y; Tuozzolo G; Yuan H
    Biotechnol Prog; 2019 Jul; 35(4):e2811. PubMed ID: 30932357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology?
    Kelley B; Kiss R; Laird M
    Adv Biochem Eng Biotechnol; 2018; 165():443-462. PubMed ID: 29721583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.
    Rameez S; Mostafa SS; Miller C; Shukla AA
    Biotechnol Prog; 2014; 30(3):718-27. PubMed ID: 24449637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization.
    Markert S; Joeris K
    Biotechnol Bioeng; 2017 Jan; 114(1):113-121. PubMed ID: 27399304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: realizing the potential in bioreactors.
    Porter AJ; Dickson AJ; Racher AJ
    Biotechnol Prog; 2010; 26(5):1446-54. PubMed ID: 20623581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics as a tool for assessing the scalability of mammalian cell perfusion systems.
    Jayapal KP; Goudar CT
    Adv Biochem Eng Biotechnol; 2014; 139():227-43. PubMed ID: 23949697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a high-throughput scale-down model in Ambr® 250 HT for plasmid DNA fermentation processes.
    Fang S; Sinanan DJ; Perez MH; Cruz-Quintero RG; Jadhav SR
    Biotechnol Prog; 2024 Mar; ():e3458. PubMed ID: 38494959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH measurement and a rational and practical pH control strategy for high throughput cell culture system.
    Zhou H; Purdie J; Wang T; Ouyang A
    Biotechnol Prog; 2010; 26(3):872-80. PubMed ID: 20039376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput screening of ultrafiltration and diafiltration processing of monoclonal antibodies via the ambr® crossflow system.
    Fernandez-Cerezo L; Wismer MK; Han I; Pollard JM
    Biotechnol Prog; 2020 Mar; 36(2):e2929. PubMed ID: 31622541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustaining an efficient and effective CHO cell line development platform by incorporation of 24-deep well plate screening and multivariate analysis.
    Mora A; Zhang SS; Carson G; Nabiswa B; Hossler P; Yoon S
    Biotechnol Prog; 2018 Jan; 34(1):175-186. PubMed ID: 29150912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.