BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30350954)

  • 1. ExoAPP: Exosome-Oriented, Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection.
    Jin D; Yang F; Zhang Y; Liu L; Zhou Y; Wang F; Zhang GJ
    Anal Chem; 2018 Dec; 90(24):14402-14411. PubMed ID: 30350954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection.
    Wang H; Chen H; Huang Z; Li T; Deng A; Kong J
    Talanta; 2018 Jul; 184():219-226. PubMed ID: 29674035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Formation of Gold Nanoparticles Decorated Ti
    Zhang H; Wang Z; Wang F; Zhang Y; Wang H; Liu Y
    Anal Chem; 2020 Apr; 92(7):5546-5553. PubMed ID: 32186362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal Ti
    Zhang Q; Wang F; Zhang H; Zhang Y; Liu M; Liu Y
    Anal Chem; 2018 Nov; 90(21):12737-12744. PubMed ID: 30350604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive Detection of Exosomes by Target-Triggered Three-Dimensional DNA Walking Machine and Exonuclease III-Assisted Electrochemical Ratiometric Biosensing.
    Zhao L; Sun R; He P; Zhang X
    Anal Chem; 2019 Nov; 91(22):14773-14779. PubMed ID: 31660712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy.
    Li B; Liu C; Pan W; Shen J; Guo J; Luo T; Feng J; Situ B; An T; Zhang Y; Zheng L
    Biosens Bioelectron; 2020 Nov; 168():112520. PubMed ID: 32866725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes.
    Wang S; Zhang L; Wan S; Cansiz S; Cui C; Liu Y; Cai R; Hong C; Teng IT; Shi M; Wu Y; Dong Y; Tan W
    ACS Nano; 2017 Apr; 11(4):3943-3949. PubMed ID: 28287705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.
    Gao L; Li Q; Li R; Yan L; Zhou Y; Chen K; Shi H
    Nanoscale; 2015 Jul; 7(25):10903-7. PubMed ID: 25939390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification.
    Huang R; He L; Li S; Liu H; Jin L; Chen Z; Zhao Y; Li Z; Deng Y; He N
    Nanoscale; 2020 Jan; 12(4):2445-2451. PubMed ID: 31894795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-based exosome isolation and highly sensitive aptamer exosome membrane protein detection for lung cancer diagnosis.
    Zhao L; Wang H; Fu J; Wu X; Liang XY; Liu XY; Wu X; Cao LL; Xu ZY; Dong M
    Biosens Bioelectron; 2022 Oct; 214():114487. PubMed ID: 35780540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Fluorescent Detection of Enterotoxigenic Escherichia coli (ETEC) K88 Based on Graphene Oxide-Dependent Nanoquencher and Klenow Fragment-Triggered Target Cyclic Amplification.
    Ling M; Peng Z; Cheng L; Deng L
    Appl Spectrosc; 2015 Oct; 69(10):1175-81. PubMed ID: 26449811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer-based fluorescence polarization assay for separation-free exosome quantification.
    Zhang Z; Tang C; Zhao L; Xu L; Zhou W; Dong Z; Yang Y; Xie Q; Fang X
    Nanoscale; 2019 May; 11(20):10106-10113. PubMed ID: 31089660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein determination using graphene oxide-aptamer modified gold nanoparticles in combination with Tween 80.
    Gao L; Li Q; Li R; Deng Z; Brady B; Xia N; Chen G; Zhou Y; Xia H; Chen K; Shi H
    Anal Chim Acta; 2016 Oct; 941():80-86. PubMed ID: 27692381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer recognition-trigged label-free homogeneous electrochemical strategy for an ultrasensitive cancer-derived exosome assay.
    Yin X; Hou T; Huang B; Yang L; Li F
    Chem Commun (Camb); 2019 Nov; 55(91):13705-13708. PubMed ID: 31657371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification.
    Ma L; Guo T; Pan S; Zhang Y
    Mikrochim Acta; 2018 Oct; 185(10):487. PubMed ID: 30276550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and sensitive exosome detection with CRISPR/Cas12a.
    Zhao X; Zhang W; Qiu X; Mei Q; Luo Y; Fu W
    Anal Bioanal Chem; 2020 Jan; 412(3):601-609. PubMed ID: 31897558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Sensitive Electrochemical Detection of Tumor Exosomes Based on Aptamer Recognition-Induced Multi-DNA Release and Cyclic Enzymatic Amplification.
    Dong H; Chen H; Jiang J; Zhang H; Cai C; Shen Q
    Anal Chem; 2018 Apr; 90(7):4507-4513. PubMed ID: 29512380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aptamer-binding DNA walking machine for sensitive electrochemiluminescence detection of tumor exosomes.
    Feng QM; Ma P; Cao QH; Guo YH; Xu JJ
    Chem Commun (Camb); 2019 Dec; 56(2):269-272. PubMed ID: 31807735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly.
    Gao ML; He F; Yin BC; Ye BC
    Analyst; 2019 Mar; 144(6):1995-2002. PubMed ID: 30698587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.