These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 30351042)
1. Iron Plaque: A Barrier Layer to the Uptake and Translocation of Copper Oxide Nanoparticles by Rice Plants. Peng C; Chen S; Shen C; He M; Zhang Y; Ye J; Liu J; Shi J Environ Sci Technol; 2018 Nov; 52(21):12244-12254. PubMed ID: 30351042 [TBL] [Abstract][Full Text] [Related]
2. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Peng C; Duan D; Xu C; Chen Y; Sun L; Zhang H; Yuan X; Zheng L; Yang Y; Yang J; Zhen X; Chen Y; Shi J Environ Pollut; 2015 Feb; 197():99-107. PubMed ID: 25521412 [TBL] [Abstract][Full Text] [Related]
3. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Wang X; Sun W; Ma X Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135 [TBL] [Abstract][Full Text] [Related]
4. Temporal Evolution of Copper Distribution and Speciation in Roots of Triticum aestivum Exposed to CuO, Cu(OH) Spielman-Sun E; Lombi E; Donner E; Avellan A; Etschmann B; Howard D; Lowry GV Environ Sci Technol; 2018 Sep; 52(17):9777-9784. PubMed ID: 30078329 [TBL] [Abstract][Full Text] [Related]
5. Fate and Transformation of CuO Nanoparticles in the Soil-Rice System during the Life Cycle of Rice Plants. Peng C; Xu C; Liu Q; Sun L; Luo Y; Shi J Environ Sci Technol; 2017 May; 51(9):4907-4917. PubMed ID: 28383251 [TBL] [Abstract][Full Text] [Related]
6. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Peng C; Tong H; Shen C; Sun L; Yuan P; He M; Shi J Sci Total Environ; 2020 Apr; 713():136662. PubMed ID: 31958734 [TBL] [Abstract][Full Text] [Related]
8. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses. Zhao J; Ren W; Dai Y; Liu L; Wang Z; Yu X; Zhang J; Wang X; Xing B Environ Sci Technol; 2017 Jul; 51(13):7686-7695. PubMed ID: 28586199 [TBL] [Abstract][Full Text] [Related]
9. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice]. Wang SL; Zhang YX; Liu HZ; Xin H Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694 [TBL] [Abstract][Full Text] [Related]
10. Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Cui JL; Zhao YP; Lu YJ; Chan TS; Zhang LL; Tsang DCW; Li XD Environ Int; 2019 May; 126():717-726. PubMed ID: 30878867 [TBL] [Abstract][Full Text] [Related]
11. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Wang S; Liu H; Zhang Y; Xin H Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023 [TBL] [Abstract][Full Text] [Related]
12. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Servin AD; Pagano L; Castillo-Michel H; De la Torre-Roche R; Hawthorne J; Hernandez-Viezcas JA; Loredo-Portales R; Majumdar S; Gardea-Torresday J; Dhankher OP; White JC Nanotoxicology; 2017 Feb; 11(1):98-111. PubMed ID: 28024451 [TBL] [Abstract][Full Text] [Related]
13. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Liu WJ; Zhu YG; Hu Y; Williams PN; Gault AG; Meharg AA; Charnock JM; Smith FA Environ Sci Technol; 2006 Sep; 40(18):5730-6. PubMed ID: 17007133 [TBL] [Abstract][Full Text] [Related]
14. Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO Liu M; Feng S; Ma Y; Xie C; He X; Ding Y; Zhang J; Luo W; Zheng L; Chen D; Yang F; Chai Z; Zhao Y; Zhang Z ACS Appl Mater Interfaces; 2019 May; 11(18):16905-16913. PubMed ID: 30993970 [TBL] [Abstract][Full Text] [Related]
15. Exogenous iron alters uptake and translocation of CuO nanoparticles in soil-rice system: A life cycle study. Zhang Q; Yuan P; Liang W; Qiao Z; Shao X; Zhang W; Peng C Environ Int; 2022 Oct; 168():107479. PubMed ID: 36007301 [TBL] [Abstract][Full Text] [Related]
16. Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Yang Z; Xiao Y; Jiao T; Zhang Y; Chen J; Gao Y Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32075321 [TBL] [Abstract][Full Text] [Related]
17. Citric acid enhances Ce uptake and accumulation in rice seedlings exposed to CeO Bao Y; Ma J; Pan C; Guo A; Li Y; Xing B Chemosphere; 2020 Feb; 240():124897. PubMed ID: 31726612 [TBL] [Abstract][Full Text] [Related]
18. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Regier N; Cosio C; von Moos N; Slaveykova VI Chemosphere; 2015 Jun; 128():56-61. PubMed ID: 25655819 [TBL] [Abstract][Full Text] [Related]
19. Regulatory Mechanism of Copper Oxide Nanoparticles on Uptake of Different Species of Arsenic in Rice. Wu Q; Shi J; Jiang X; Wu H Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578544 [TBL] [Abstract][Full Text] [Related]
20. Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice. Wu Y; Yang L; Gong H; Dang F; Zhou DM Environ Pollut; 2020 May; 260():113969. PubMed ID: 31991350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]