These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 30351054)

  • 1. Vibrational Properties of Metastable Polymorph Structures by Machine Learning.
    Legrain F; van Roekeghem A; Curtarolo S; Carrete J; Madsen GKH; Mingo N
    J Chem Inf Model; 2018 Dec; 58(12):2460-2466. PubMed ID: 30351054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Cost Vibrational Free Energies in Solid Solutions with Machine Learning Force Fields.
    Tolborg K; Walsh A
    J Phys Chem Lett; 2023 Dec; 14(51):11618-11624. PubMed ID: 38100379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning based energy-free structure predictions of molecules, transition states, and solids.
    Lemm D; von Rudorff GF; von Lilienfeld OA
    Nat Commun; 2021 Jul; 12(1):4468. PubMed ID: 34294693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics.
    Wu X; Zhou W; Dong H; Ying P; Wang Y; Song B; Fan Z; Xiong S
    J Chem Phys; 2024 Jul; 161(1):. PubMed ID: 38949595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Thermal Stability of Janus Monolayers SnXY (X, Y = O, S, Se): Ab-Initio Molecular Dynamics and Beyond.
    Luo Y; Han S; Hu R; Yuan H; Jiao W; Liu H
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Quantum-Classical Treatment of N
    Hong Q; Storchi L; Sun Q; Bartolomei M; Pirani F; Coletti C
    J Chem Theory Comput; 2023 Dec; 19(23):8557-8571. PubMed ID: 38007713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry Informed Machine Learning-Based Heat Capacity Prediction of Solid Mixed Oxides.
    Barra J; Chahal R; Audesse S; Zhang J; Zhong Y; Kabel J; Lam S
    J Phys Chem Lett; 2024 May; 15(17):4721-4728. PubMed ID: 38660969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transferable machine learning interatomic potential for carbon hydrogen systems.
    Faraji S; Liu M
    Phys Chem Chem Phys; 2024 Aug; 26(34):22346-22358. PubMed ID: 39140158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-Classical Trajectory Calculation of Rate Constants Using an Ab Initio Trained Machine Learning Model (aML-MD) with Multifidelity Data.
    Shi Z; Lele AD; Jasper AW; Klippenstein SJ; Ju Y
    J Phys Chem A; 2024 May; 128(17):3449-3457. PubMed ID: 38642065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How close are the classical two-body potentials to ab initio calculations? Insights from linear machine learning based force matching.
    Yu Z; Annamareddy A; Morgan D; Wang B
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38310473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-cutoff machine-learned potential for condensed organic systems obtained
    Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E
    Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine-Learning-Based Characterization and Inverse Design of Metamaterials.
    Liu W; Xu G; Fan W; Lyu M; Xia Z
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a Low Thermal Conductivity Oxide Guided by Probe Structure Prediction and Machine Learning.
    Collins CM; Daniels LM; Gibson Q; Gaultois MW; Moran M; Feetham R; Pitcher MJ; Dyer MS; Delacotte C; Zanella M; Murray CA; Glodan G; Pérez O; Pelloquin D; Manning TD; Alaria J; Darling GR; Claridge JB; Rosseinsky MJ
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16457-16465. PubMed ID: 33951284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating Elastic Property Prediction in Fe-C Alloys through Coupling of Molecular Dynamics and Machine Learning.
    Risal S; Singh N; Yao Y; Sun L; Risal S; Zhu W
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Prediction of Phonon Density of States With Euclidean Neural Networks.
    Chen Z; Andrejevic N; Smidt T; Ding Z; Xu Q; Chi YT; Nguyen QT; Alatas A; Kong J; Li M
    Adv Sci (Weinh); 2021 Jun; 8(12):e2004214. PubMed ID: 34165895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning.
    Gharakhanyan V; Wirth LJ; Garrido Torres JA; Eisenberg E; Wang T; Trinkle DR; Chatterjee S; Urban A
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38804486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning-Based Prediction of Activation Energies for Chemical Reactions on Metal Surfaces.
    Hutton DJ; Cordes KE; Michel C; Göltl F
    J Chem Inf Model; 2023 Oct; 63(19):6006-6013. PubMed ID: 37722106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imperfections are not 0 K: free energy of point defects in crystals.
    Mosquera-Lois I; Kavanagh SR; Klarbring J; Tolborg K; Walsh A
    Chem Soc Rev; 2023 Aug; 52(17):5812-5826. PubMed ID: 37565783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Flattened Structures of Molecules and Materials on Machine Learning Model Training.
    de Azevedo LC; Prati RC
    J Chem Inf Model; 2023 Sep; 63(17):5446-5456. PubMed ID: 37625081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating the prediction of stable materials with machine learning.
    Griesemer SD; Xia Y; Wolverton C
    Nat Comput Sci; 2023 Nov; 3(11):934-945. PubMed ID: 38177590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.