These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30351055)

  • 1. NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit.
    Chatzigoulas A; Karathanou K; Dellis D; Cournia Z
    J Chem Inf Model; 2018 Dec; 58(12):2380-2386. PubMed ID: 30351055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting nanocrystal shape through consideration of surface-ligand interactions.
    Bealing CR; Baumgardner WJ; Choi JJ; Hanrath T; Hennig RG
    ACS Nano; 2012 Mar; 6(3):2118-27. PubMed ID: 22329695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.
    O'Brien MN; Lin HX; Girard M; Olvera de la Cruz M; Mirkin CA
    J Am Chem Soc; 2016 Nov; 138(44):14562-14565. PubMed ID: 27792331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction to "NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit".
    Chatzigoulas A; Karathanou K; Dellis D; Cournia Z
    J Chem Inf Model; 2019 Apr; 59(4):1681. PubMed ID: 30933521
    [No Abstract]   [Full Text] [Related]  

  • 5. Nanoparticle shapes by using Wulff constructions and first-principles calculations.
    Barmparis GD; Lodziana Z; Lopez N; Remediakis IN
    Beilstein J Nanotechnol; 2015; 6():361-8. PubMed ID: 25821675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ogre: A Python package for molecular crystal surface generation with applications to surface energy and crystal habit prediction.
    Yang S; Bier I; Wen W; Zhan J; Moayedpour S; Marom N
    J Chem Phys; 2020 Jun; 152(24):244122. PubMed ID: 32610993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.
    Kim KC; Dai B; Karl Johnson J; Sholl DS
    Nanotechnology; 2009 May; 20(20):204001. PubMed ID: 19420649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic software: a sustainable resource for the community.
    Everse SJ; Doublié S
    Methods Mol Biol; 2007; 364():273-8. PubMed ID: 17172771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic nanocrystal dissolution observation by in situ transmission electron microscopy.
    Cordeiro MA; Crozier PA; Leite ER
    Nano Lett; 2012 Nov; 12(11):5708-13. PubMed ID: 23039854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-mediated nanoparticle crystallization into Wulff polyhedra.
    Auyeung E; Li TI; Senesi AJ; Schmucker AL; Pals BC; de la Cruz MO; Mirkin CA
    Nature; 2014 Jan; 505(7481):73-7. PubMed ID: 24284632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-equilibrium anisotropic colloidal single crystal growth with DNA.
    Seo SE; Girard M; Olvera de la Cruz M; Mirkin CA
    Nat Commun; 2018 Nov; 9(1):4558. PubMed ID: 30385762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure, crystal morphology, and surface properties of an investigational drug.
    Kiang YH; Yang CY; Staples RJ; Jona J
    Int J Pharm; 2009 Feb; 368(1-2):76-82. PubMed ID: 19007872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafine heat-induced structural perturbations of bone mineral at the individual nanocrystal level.
    Verezhak M; Rauch EF; Véron M; Lancelon-Pin C; Putaux JL; Plazanet M; Gourrier A
    Acta Biomater; 2018 Jun; 73():500-508. PubMed ID: 29649638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Polarizing microscopy of crystalline drugs based on the crystal habit determination for the purpose of a rapid estimation of crystal habits, particle sizes and specific surface areas of small crystals].
    Watanabe A
    Yakugaku Zasshi; 1997 Nov; 117(10-11):771-85. PubMed ID: 9414590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XtalPred: a web server for prediction of protein crystallizability.
    Slabinski L; Jaroszewski L; Rychlewski L; Wilson IA; Lesley SA; Godzik A
    Bioinformatics; 2007 Dec; 23(24):3403-5. PubMed ID: 17921170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SChiSM2: creating interactive web page annotations of molecular structure models using Jmol.
    Cammer S
    Bioinformatics; 2007 Feb; 23(3):383-4. PubMed ID: 17204464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent interfaces between crystals in nanocrystal composites.
    Liu H; Zheng Z; Yang D; Ke X; Jaatinen E; Zhao JC; Zhu HY
    ACS Nano; 2010 Oct; 4(10):6219-27. PubMed ID: 20822147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal Engineering for Catalysis.
    Rimer JD; Chawla A; Le TT
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():283-309. PubMed ID: 29570356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface energies of non-centrosymmetric nanocrystals by the inverse Wulff construction method.
    Lai F; Chen Y; Guo H
    Phys Chem Chem Phys; 2019 Jul; 21(30):16486-16496. PubMed ID: 31322641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward rational protein crystallization: A Web server for the design of crystallizable protein variants.
    Goldschmidt L; Cooper DR; Derewenda ZS; Eisenberg D
    Protein Sci; 2007 Aug; 16(8):1569-76. PubMed ID: 17656576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.