These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1764 related articles for article (PubMed ID: 30351060)
21. Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and pH-responsive dual-drug delivery. Ling D; Li H; Xi W; Wang Z; Bednarkiewicz A; Dibaba ST; Shi L; Sun L J Mater Chem B; 2020 Feb; 8(6):1316-1325. PubMed ID: 31970370 [TBL] [Abstract][Full Text] [Related]
22. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Haque ST; Islam RA; Gan SH; Chowdhury EH Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937817 [No Abstract] [Full Text] [Related]
23. Synthesis and surface modification of mesoporous metal-organic framework (UiO-66) for efficient pH-responsive drug delivery and lung cancer treatment. Xie C; Guo B; You H; Wang Z; Leng Q; Ding L; Wang Q Nanotechnology; 2021 May; 32(29):. PubMed ID: 33853047 [TBL] [Abstract][Full Text] [Related]
24. UiO-66 metal organic framework nanoparticles loaded carboxymethyl chitosan/poly ethylene oxide/polyurethane core-shell nanofibers for controlled release of doxorubicin and folic acid. Farboudi A; Mahboobnia K; Chogan F; Karimi M; Askari A; Banihashem S; Davaran S; Irani M Int J Biol Macromol; 2020 May; 150():178-188. PubMed ID: 32045607 [TBL] [Abstract][Full Text] [Related]
25. A reversible, switchable pH-driven quaternary ammonium pillar[5]arene nanogate for mesoporous silica nanoparticles. Santos ECS; Dos Santos TC; Fernandes TS; Jorge FL; Nascimento V; Madriaga VGC; Cordeiro PS; Checca NR; Da Costa NM; Pinto LFR; Ronconi CM J Mater Chem B; 2020 Jan; 8(4):703-714. PubMed ID: 31867589 [TBL] [Abstract][Full Text] [Related]
26. Effect of Chemical Binding of Doxorubicin Hydrochloride to Gold Nanoparticles, Versus Electrostatic Adsorption, on the In Vitro Drug Release and Cytotoxicity to Breast Cancer Cells. Zayed GM; Kamal I; Abdelhafez WA; M Alsharif F; Amin MA; Shaykoon MSA; Sarhan HA; Abdelsalam AM Pharm Res; 2018 Mar; 35(6):112. PubMed ID: 29603025 [TBL] [Abstract][Full Text] [Related]
27. Hierarchical MOF-on-MOF Architecture for pH/GSH-Controlled Drug Delivery and Fe-Based Chemodynamic Therapy. Ni W; Zhang L; Zhang H; Zhang C; Jiang K; Cao X Inorg Chem; 2022 Feb; 61(7):3281-3287. PubMed ID: 35138838 [TBL] [Abstract][Full Text] [Related]
28. pH Responsiveness of Hexosomes and Cubosomes for Combined Delivery of Li Y; Angelova A; Hu F; Garamus VM; Peng C; Li N; Liu J; Liu D; Zou A Langmuir; 2019 Nov; 35(45):14532-14542. PubMed ID: 31635451 [TBL] [Abstract][Full Text] [Related]
29. Chitosan-based DDSs for pH/hypoxia dual-triggered DOX delivery: Facile morphology modulation for higher in vitro cytotoxicity. Xie P; Liu P Carbohydr Polym; 2022 Jan; 275():118760. PubMed ID: 34742449 [TBL] [Abstract][Full Text] [Related]
30. Chitosan-tripolyphosphate nanoparticles functionalized with a pH-responsive amphiphile improved the in vitro antineoplastic effects of doxorubicin. Nogueira-Librelotto DR; Scheeren LE; Vinardell MP; Mitjans M; Rolim CMB Colloids Surf B Biointerfaces; 2016 Nov; 147():326-335. PubMed ID: 27543694 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of self-assembled chitosan-dispersed LDL nanoparticles for drug delivery with a one-step green method. Tian J; Xu S; Deng H; Song X; Li X; Chen J; Cao F; Li B Int J Pharm; 2017 Jan; 517(1-2):25-34. PubMed ID: 27845214 [TBL] [Abstract][Full Text] [Related]
32. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Feng C; Li J; Kong M; Liu Y; Cheng XJ; Li Y; Park HJ; Chen XG Colloids Surf B Biointerfaces; 2015 Apr; 128():439-447. PubMed ID: 25769283 [TBL] [Abstract][Full Text] [Related]
34. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy. Fu B; Dang M; Tao J; Li Y; Tang Y J Colloid Interface Sci; 2020 Jun; 570():197-204. PubMed ID: 32151829 [TBL] [Abstract][Full Text] [Related]
35. Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers. Hu Y; Ding Y; Ding D; Sun M; Zhang L; Jiang X; Yang C Biomacromolecules; 2007 Apr; 8(4):1069-76. PubMed ID: 17326676 [TBL] [Abstract][Full Text] [Related]
36. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449 [TBL] [Abstract][Full Text] [Related]
37. Microfluidics-Assisted Surface Trifunctionalization of a Zeolitic Imidazolate Framework Nanocarrier for Targeted and Controllable Multitherapies of Tumors. Shen J; Ma M; Zhang H; Yu H; Xue F; Hao N; Chen H ACS Appl Mater Interfaces; 2020 Oct; 12(41):45838-45849. PubMed ID: 32956582 [TBL] [Abstract][Full Text] [Related]
38. Stimuli-responsive lipid nanotubes in gel formulations for the delivery of doxorubicin. Ilbasmis-Tamer S; Unsal H; Tugcu-Demiroz F; Kalaycioglu GD; Degim IT; Aydogan N Colloids Surf B Biointerfaces; 2016 Jul; 143():406-414. PubMed ID: 27037777 [TBL] [Abstract][Full Text] [Related]
39. A γ-cyclodextrin-based metal-organic framework embedded with graphene quantum dots and modified with PEGMA via SI-ATRP for anticancer drug delivery and therapy. Jia Q; Li Z; Guo C; Huang X; Song Y; Zhou N; Wang M; Zhang Z; He L; Du M Nanoscale; 2019 Nov; 11(43):20956-20967. PubMed ID: 31660562 [TBL] [Abstract][Full Text] [Related]
40. Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release. Chen W; Achazi K; Schade B; Haag R J Control Release; 2015 May; 205():15-24. PubMed ID: 25445693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]