BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30351082)

  • 1. Releasing Metal-Coordination Capacity of Cucurbit[6]uril Macrocycle in Pseudorotaxane Ligands for the Construction of Interwoven Uranyl-Rotaxane Coordination Polymers.
    Li FZ; Mei L; Hu KQ; Yu JP; An SW; Liu K; Chai ZF; Liu N; Shi WQ
    Inorg Chem; 2018 Nov; 57(21):13513-13523. PubMed ID: 30351082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranyl Compounds Involving a Weakly Bonded Pseudorotaxane Linker: Combined Effect of pH and Competing Ligands on Uranyl Coordination and Speciation.
    Li FZ; Mei L; Hu KQ; An SW; Wu S; Liu N; Chai ZF; Shi WQ
    Inorg Chem; 2019 Mar; 58(5):3271-3282. PubMed ID: 30741536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations.
    Li FZ; Mei L; An SW; Hu KQ; Chai ZF; Liu N; Shi WQ
    Inorg Chem; 2020 Mar; 59(6):4058-4067. PubMed ID: 32129613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity Effect in Uranyl Coordination of the Cucurbit[6]uril-Bipyridinium Pseudorotaxane Ligand for Promoting Host-Guest Synergistic Chelating.
    Li FZ; Geng JS; Hu KQ; Yu JP; Liu N; Chai ZF; Mei L; Shi WQ
    Inorg Chem; 2021 Jul; 60(14):10522-10534. PubMed ID: 34212724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular Host-Guest Inclusion for Distinguishing Cucurbit[7]uril-Based Pseudorotaxanes from Small-Molecule Ligands in Coordination Assembly with a Uranyl Center.
    Mei L; Xie ZN; Hu KQ; Yuan LY; Gao ZQ; Chai ZF; Shi WQ
    Chemistry; 2017 Oct; 23(56):13995-14003. PubMed ID: 28800189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination-Adaptive Polydentate Pseudorotaxane Ligand for Capturing Multiple Uranyl Species.
    Wang JY; Mei L; Huang ZW; Chi XW; Geng JS; Hu KQ; Yu JP; Jiao CS; Zhang M; Chai ZF; Shi WQ
    Inorg Chem; 2022 Feb; 61(7):3058-3071. PubMed ID: 35130695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Isomers of Coordination-Directed Side-Chain Polypseudorotaxanes Based on Trimeric Uranyl Oxalate Nodes.
    Ge YC; Mei L; Xie ZN; Hu KQ; Xia CQ; Wang XL; Chai ZF; Shi WQ
    Chemistry; 2017 Jun; 23(35):8380-8384. PubMed ID: 28466492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination polymers containing rotaxane linkers.
    Vukotic VN; Loeb SJ
    Chem Soc Rev; 2012 Sep; 41(18):5896-906. PubMed ID: 22717946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Difference Between Rotaxane and Pseudorotaxane.
    Sun HL; Zhang HY; Dai Z; Han X; Liu Y
    Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetranuclear Uranyl Polyrotaxanes: Preferred Selectivity toward Uranyl Tetramer for Stabilizing a Flexible Polyrotaxane Chain Exhibiting Weakened Supramolecular Inclusion.
    Mei L; Wang L; Liu CM; Zhao YL; Chai ZF; Shi WQ
    Chemistry; 2015 Jul; 21(28):10226-35. PubMed ID: 26036243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cucurbit[10]uril-Based [2]Rotaxane: Preparation and Supramolecular Assembly-Induced Fluorescence Enhancement.
    Yu Y; Li Y; Wang X; Nian H; Wang L; Li J; Zhao Y; Yang X; Liu S; Cao L
    J Org Chem; 2017 Jun; 82(11):5590-5596. PubMed ID: 28486799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Triggered Structural Dynamics of Non-Coordinating Guest Moieties in a Fluorescent Actinide Polyrotaxane Framework.
    Li FZ; Geng JS; Hu KQ; Zeng LW; Wang JY; Kong XH; Liu N; Chai ZF; Mei L; Shi WQ
    Chemistry; 2021 Jun; 27(34):8730-8736. PubMed ID: 33872429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization.
    Geng JS; Mei L; Liang YY; Yuan LY; Yu JP; Hu KQ; Yuan LH; Feng W; Chai ZF; Shi WQ
    Nat Commun; 2022 Apr; 13(1):2030. PubMed ID: 35440111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed-Ligand Uranyl Polyrotaxanes Incorporating a Sulfate/Oxalate Coligand: Achieving Structural Diversity via pH-Dependent Competitive Effect.
    Xie ZN; Mei L; Hu KQ; Xia LS; Chai ZF; Shi WQ
    Inorg Chem; 2017 Mar; 56(6):3227-3237. PubMed ID: 28271899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neptunium(v)-mediated interwoven transuranium-rotaxane network incorporating a mechanically interlocked [c2]daisy chain unit.
    Mei L; Xu C; Wu QY; Hu KQ; Yuan LY; Chen J; Xiao CL; Wang SA; Chai ZF; Shi WQ
    Chem Commun (Camb); 2018 Aug; 54(62):8645-8648. PubMed ID: 30022209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Diversity of Bipyridinium-Based Uranyl Coordination Polymers: Synthesis, Characterization, and Ion-Exchange Application.
    Zeng LW; Hu KQ; Mei L; Li FZ; Huang ZW; An SW; Chai ZF; Shi WQ
    Inorg Chem; 2019 Oct; 58(20):14075-14084. PubMed ID: 31573800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses of cucurbit[6]uril-based metal-organic rotaxane networks by the anion regulation strategy and their proton conduction properties.
    Wu XS; Cheng DM; Wang XL; Sun J; Zang HY; Su ZM
    Dalton Trans; 2020 Feb; 49(6):1747-1751. PubMed ID: 31967144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensembles from silver clusters and cucurbit[6]uril-containing linkers.
    Li NN; Yang M; Xu XJ; Dong XY; Li S; Zang SQ
    Dalton Trans; 2021 Nov; 50(42):15267-15273. PubMed ID: 34632996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-, two- and three-periodic metal-organic rotaxane frameworks (MORFs): linking cationic transition-metal nodes with an anionic rotaxane ligand.
    Vukotic VN; Loeb SJ
    Chemistry; 2010 Dec; 16(46):13630-7. PubMed ID: 21104958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interwoven metal-organic framework combining mechanically interlocked linkers and interpenetrated networks.
    Frank NC; Mercer DJ; Loeb SJ
    Chemistry; 2013 Oct; 19(42):14076-80. PubMed ID: 24019167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.