These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30351124)

  • 1. Coarse-Grained Simulations of Three-Armed Star Polymer Melts and Comparison with Linear Chains.
    Liu L; den Otter WK; Briels WJ
    J Phys Chem B; 2018 Nov; 122(44):10210-10218. PubMed ID: 30351124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained simulations of moderately entangled star polyethylene melts.
    Liu L; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2013 Jun; 138(24):244912. PubMed ID: 23822279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation studies on architecture dependence of unentangled polymer melts.
    Xu X; Chen J; An L
    J Chem Phys; 2015 Feb; 142(7):074903. PubMed ID: 25702027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chain dynamics of poly(ethylene-alt-propylene) melts by means of coarse-grained simulations based on atomistic molecular dynamics.
    Pérez-Aparicio R; Colmenero J; Alvarez F; Padding JT; Briels WJ
    J Chem Phys; 2010 Jan; 132(2):024904. PubMed ID: 20095706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slip-Spring Hybrid Particle-Field Molecular Dynamics for Coarse-Graining Branched Polymer Melts: Polystyrene Melts as an Example.
    Wu Z; Müller-Plathe F
    J Chem Theory Comput; 2022 Jun; 18(6):3814-3828. PubMed ID: 35617016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft Character of Star-Like Polymer Melts: From Linear-Like Chains to Impenetrable Nanoparticles.
    Bačová P; Gkolfi E; Harmandaris V
    Nano Lett; 2023 Feb; 23(4):1608-1614. PubMed ID: 36621897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arm retraction dynamics of entangled star polymers: A forward flux sampling method study.
    Zhu J; Likhtman AE; Wang Z
    J Chem Phys; 2017 Jul; 147(4):044907. PubMed ID: 28764356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model.
    Stephanou PS; Baig C; Tsolou G; Mavrantzas VG; Kröger M
    J Chem Phys; 2010 Mar; 132(12):124904. PubMed ID: 20370147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipative particle dynamics simulations of polymer melts. I. Building potential of mean force for polyethylene and cis-polybutadiene.
    Guerrault X; Rousseau B; Farago J
    J Chem Phys; 2004 Oct; 121(13):6538-46. PubMed ID: 15446955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of thermodynamic, conformational, and structural properties of bottlebrush with star and ring polymer melts.
    Chremos A; Douglas JF
    J Chem Phys; 2018 Jul; 149(4):044904. PubMed ID: 30068167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Branching on the Configurational and Dynamical Properties of Entangled Polymer Melts.
    Chremos A; Douglas JF
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31207890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected Stress Overshoot in Extensional Flow of Star Polymer Melts.
    Wang Y; Goecke A; Hirschberg V; Zhong Y; Liu S; Wilhelm M; Huang Q
    ACS Macro Lett; 2024 Jul; 13(7):812-817. PubMed ID: 38861706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic evolution in coarse-grained molecular dynamics simulations of polyethylene melts.
    Depa PK; Maranas JK
    J Chem Phys; 2007 Feb; 126(5):054903. PubMed ID: 17302503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coarse-grained model for polyethylene glycol in bulk water and at a water/air interface.
    Prasitnok K; Wilson MR
    Phys Chem Chem Phys; 2013 Oct; 15(40):17093-104. PubMed ID: 24005163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer architecture effect on rheology and segmental dynamics in poly (methyl methacrylate)-silica nanocomposite melts.
    Darvishi S; Şenses E
    Turk J Chem; 2023; 47(4):749-762. PubMed ID: 38174057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic heterogeneity and collective motion in star polymer melts.
    Fan J; Emamy H; Chremos A; Douglas JF; Starr FW
    J Chem Phys; 2020 Feb; 152(5):054904. PubMed ID: 32035474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores.
    Carrillo JM; Sumpter BG
    J Chem Phys; 2014 Aug; 141(7):074904. PubMed ID: 25149814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary filling of star polymer melts in nanopores.
    Zhang J; Lei J; Feng P; Floudas G; Zhang G; Zhou J
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse grained model of entangled polymer melts.
    Rakshit A; Picu RC
    J Chem Phys; 2006 Oct; 125(16):164907. PubMed ID: 17092139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational and experimental study of the linear and nonlinear response of a star polymer melt with a moderate number of unentangled arms.
    Fitzgerald BW; Lentzakis H; Sakellariou G; Vlassopoulos D; Briels WJ
    J Chem Phys; 2014 Sep; 141(11):114907. PubMed ID: 25240372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.