These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30351136)

  • 1. Photoactive Complexes with Earth-Abundant Metals.
    Wenger OS
    J Am Chem Soc; 2018 Oct; 140(42):13522-13533. PubMed ID: 30351136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements.
    Larsen CB; Wenger OS
    Chemistry; 2018 Feb; 24(9):2039-2058. PubMed ID: 28892199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysics and photochemistry with Earth-abundant metals - fundamentals and concepts.
    Förster C; Heinze K
    Chem Soc Rev; 2020 Feb; 49(4):1057-1070. PubMed ID: 32025671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides.
    Herr P; Glaser F; Büldt LA; Larsen CB; Wenger OS
    J Am Chem Soc; 2019 Sep; 141(36):14394-14402. PubMed ID: 31464429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d
    Sinha N; Wenger OS
    J Am Chem Soc; 2023 Mar; 145(9):4903-4920. PubMed ID: 36808978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminescent First-Row Transition Metal Complexes.
    Wegeberg C; Wenger OS
    JACS Au; 2021 Nov; 1(11):1860-1876. PubMed ID: 34841405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is Iron the New Ruthenium?
    Wenger OS
    Chemistry; 2019 Apr; 25(24):6043-6052. PubMed ID: 30615242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium(0), Molybdenum(0), and Tungsten(0) Isocyanide Complexes as Luminophores and Photosensitizers with Long-Lived Excited States.
    Büldt LA; Wenger OS
    Angew Chem Int Ed Engl; 2017 May; 56(21):5676-5682. PubMed ID: 28317225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.
    Liu Y; Persson P; Sundström V; Wärnmark K
    Acc Chem Res; 2016 Aug; 49(8):1477-85. PubMed ID: 27455191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First-Row Transition Metal Complexes.
    Sinha N; Yaltseva P; Wenger OS
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202303864. PubMed ID: 37057372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex.
    Treiling S; Wang C; Förster C; Reichenauer F; Kalmbach J; Boden P; Harris JP; Carrella LM; Rentschler E; Resch-Genger U; Reber C; Seitz M; Gerhards M; Heinze K
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18075-18085. PubMed ID: 31600421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.
    Rury AS; Wiley TE; Sension RJ
    Acc Chem Res; 2015 Mar; 48(3):860-7. PubMed ID: 25741574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The recent development of efficient Earth-abundant transition-metal nanocatalysts.
    Wang D; Astruc D
    Chem Soc Rev; 2017 Feb; 46(3):816-854. PubMed ID: 28101543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence.
    Chábera P; Liu Y; Prakash O; Thyrhaug E; Nahhas AE; Honarfar A; Essén S; Fredin LA; Harlang TC; Kjær KS; Handrup K; Ericson F; Tatsuno H; Morgan K; Schnadt J; Häggström L; Ericsson T; Sobkowiak A; Lidin S; Huang P; Styring S; Uhlig J; Bendix J; Lomoth R; Sundström V; Persson P; Wärnmark K
    Nature; 2017 Mar; 543(7647):695-699. PubMed ID: 28358064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminescent complexes made from chelating isocyanide ligands and earth-abundant metals.
    Büldt LA; Wenger OS
    Dalton Trans; 2017 Nov; 46(44):15175-15177. PubMed ID: 29063087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-complexes as ligands to generate asymmetric homo- and heterodinuclear M(A)(III)M(B)(II) species: a magneto-structural and spectroscopic comparison of imidazole-N versus pyridine-N.
    Biswas B; Salunke-Gawali S; Weyhermüller T; Bachler V; Bill E; Chaudhuri P
    Inorg Chem; 2010 Jan; 49(2):626-41. PubMed ID: 20000374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.
    Lin J; Han Q; Ding Y
    Chem Rec; 2018 Nov; 18(11):1531-1547. PubMed ID: 29863815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutral bis(alpha-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system.
    Lu CC; Bill E; Weyhermüller T; Bothe E; Wieghardt K
    J Am Chem Soc; 2008 Mar; 130(10):3181-97. PubMed ID: 18284242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.