These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30351222)

  • 21. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure.
    Chen T; Bai J; Tian J; Huang P; Zheng H; Wang J
    Colloids Surf B Biointerfaces; 2018 Jul; 167():354-363. PubMed ID: 29689491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep.
    Mohan N; Gupta V; Sridharan BP; Mellott AJ; Easley JT; Palmer RH; Galbraith RA; Key VH; Berkland CJ; Detamore MS
    Regen Med; 2015; 10(6):709-28. PubMed ID: 26418471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heparan sulfate-based treatments for regenerative medicine.
    Rai B; Nurcombe V; Cool SM
    Crit Rev Eukaryot Gene Expr; 2011; 21(1):1-12. PubMed ID: 21967329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [CMDBS, functional analogs of sulfate heparanes, used as osseous cicatrizing agents].
    Blanquaert F; Barritault D; Saffar JL; Josefonvicz J; Caruelle JP
    Ann Endocrinol (Paris); 1994; 55(2):121-3. PubMed ID: 7528489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model.
    Menendez MI; Clark DJ; Carlton M; Flanigan DC; Jia G; Sammet S; Weisbrode SE; Knopp MV; Bertone AL
    Osteoarthritis Cartilage; 2011 Aug; 19(8):1066-75. PubMed ID: 21683796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years.
    Kon E; Filardo G; Di Martino A; Busacca M; Moio A; Perdisa F; Marcacci M
    Am J Sports Med; 2014 Jan; 42(1):158-65. PubMed ID: 24114751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs.
    Cui W; Wang Q; Chen G; Zhou S; Chang Q; Zuo Q; Ren K; Fan W
    J Biosci Bioeng; 2011 Apr; 111(4):493-500. PubMed ID: 21208828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring the subchondral bone phase of a multi-layered osteochondral construct to support bone healing and a cartilage analog.
    Marionneaux A; Walters J; Guo H; Mercuri J
    Acta Biomater; 2018 Sep; 78():351-364. PubMed ID: 30099201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in joint morphology between the knee and ankle affect the repair of osteochondral defects in a rabbit model.
    Makitsubo M; Adachi N; Nakasa T; Kato T; Shimizu R; Ochi M
    J Orthop Surg Res; 2016 Oct; 11(1):110. PubMed ID: 27716360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study.
    Jackson DW; Lalor PA; Aberman HM; Simon TM
    J Bone Joint Surg Am; 2001 Jan; 83(1):53-64. PubMed ID: 11205859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regeneration of Osteochondral Defects Using Developmentally Inspired Cartilaginous Templates.
    Critchley S; Cunniffe G; O'Reilly A; Diaz-Payno P; Schipani R; McAlinden A; Withers D; Shin J; Alsberg E; Kelly DJ
    Tissue Eng Part A; 2019 Feb; 25(3-4):159-171. PubMed ID: 30358516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells.
    Zhou G; Liu W; Cui L; Wang X; Liu T; Cao Y
    Tissue Eng; 2006 Nov; 12(11):3209-21. PubMed ID: 17518635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local BMP-7 release from a PLGA scaffolding-matrix for the repair of osteochondral defects in rabbits.
    Jung MR; Shim IK; Chung HJ; Lee HR; Park YJ; Lee MC; Yang YI; Do SH; Lee SJ
    J Control Release; 2012 Sep; 162(3):485-91. PubMed ID: 22902517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xenopus laevis as a novel model to study long bone critical-size defect repair by growth factor-mediated regeneration.
    Feng L; Milner DJ; Xia C; Nye HL; Redwood P; Cameron JA; Stocum DL; Fang N; Jasiuk I
    Tissue Eng Part A; 2011 Mar; 17(5-6):691-701. PubMed ID: 20929280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits.
    Gugjoo MB; Amarpal ; Abdelbaset-Ismail A; Aithal HP; Kinjavdekar P; Pawde AM; Kumar GS; Sharma GT
    Biomed Pharmacother; 2017 Sep; 93():1165-1174. PubMed ID: 28738525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multilayered Scaffold with a Compact Interfacial Layer Enhances Osteochondral Defect Repair.
    Jia S; Wang J; Zhang T; Pan W; Li Z; He X; Yang C; Wu Q; Sun W; Xiong Z; Hao D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20296-20305. PubMed ID: 29808989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration.
    Yin H; Wang Y; Sun X; Cui G; Sun Z; Chen P; Xu Y; Yuan X; Meng H; Xu W; Wang A; Guo Q; Lu S; Peng J
    Acta Biomater; 2018 Sep; 77():127-141. PubMed ID: 30030172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair of articular cartilage defects with acellular cartilage sheets in a swine model.
    Xue J; He A; Zhu Y; Liu Y; Li D; Yin Z; Zhang W; Liu W; Cao Y; Zhou G
    Biomed Mater; 2018 Feb; 13(2):025016. PubMed ID: 29125133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model.
    He A; Liu L; Luo X; Liu Y; Liu Y; Liu F; Wang X; Zhang Z; Zhang W; Liu W; Cao Y; Zhou G
    Sci Rep; 2017 Jan; 7():40489. PubMed ID: 28084417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.