These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 30351912)
1. Preparation and Characterization of Composite Blends Based on Polylactic Acid/Polycaprolactone and Silk. Balali S; Davachi SM; Sahraeian R; Shiroud Heidari B; Seyfi J; Hejazi I Biomacromolecules; 2018 Nov; 19(11):4358-4369. PubMed ID: 30351912 [TBL] [Abstract][Full Text] [Related]
2. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers. Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850 [TBL] [Abstract][Full Text] [Related]
3. [Physical, chemical, and biological property of silk reinforced polycaprolactone composites for bone tissue engineering]. Tian W; He G; Liu Y; Guan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Sep; 38(9):1123-1129. PubMed ID: 39300889 [TBL] [Abstract][Full Text] [Related]
4. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds. Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162 [TBL] [Abstract][Full Text] [Related]
6. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
7. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
8. Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses. Wang F; Wu H; Venkataraman V; Hu X Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109890. PubMed ID: 31500018 [TBL] [Abstract][Full Text] [Related]
9. [Preparation and cytocompatibility study of poly (epsilon-caprolactone)/silk sericin nanofibrous scaffolds]. Li H; Li L; Qian Y; Cai K; Lu Y; Zhong L; Liu W; Yang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):305-9. PubMed ID: 21604491 [TBL] [Abstract][Full Text] [Related]
10. Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Thomas MS; Pillai PKS; Faria M; Cordeiro N; Barud H; Thomas S; Pothen LA J Mater Sci Mater Med; 2018 Aug; 29(9):137. PubMed ID: 30120580 [TBL] [Abstract][Full Text] [Related]
11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. Mirmusavi MH; Zadehnajar P; Semnani D; Karbasi S; Fekrat F; Heidari F Int J Biol Macromol; 2019 Jul; 132():822-835. PubMed ID: 30940593 [TBL] [Abstract][Full Text] [Related]
13. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
14. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering. Cont L; Grant D; Scotchford C; Todea M; Popa C J Biomater Appl; 2013 Feb; 27(6):707-16. PubMed ID: 22071352 [TBL] [Abstract][Full Text] [Related]
15. Preparation of antibacterial degummed silk fiber/nano-hydroxyapatite/polylactic acid composite scaffold by degummed silk fiber loaded silver nanoparticles. Li G; Qin S; Zhang D; Liu X Nanotechnology; 2019 Jul; 30(29):295101. PubMed ID: 30917342 [TBL] [Abstract][Full Text] [Related]
16. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber. Ju D; Han L; Li F; Chen S; Dong L Int J Biol Macromol; 2014 Jun; 67():343-50. PubMed ID: 24704167 [TBL] [Abstract][Full Text] [Related]
17. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Vyas C; Zhang J; Øvrebø Ø; Huang B; Roberts I; Setty M; Allardyce B; Haugen H; Rajkhowa R; Bartolo P Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111433. PubMed ID: 33255027 [TBL] [Abstract][Full Text] [Related]
19. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
20. Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. Thomas V; Jagani S; Johnson K; Jose MV; Dean DR; Vohra YK; Nyairo E J Nanosci Nanotechnol; 2006 Feb; 6(2):487-93. PubMed ID: 16573049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]