These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30351924)

  • 41. Bouncing droplets on nonsuperhydrophobic surfaces.
    Chen L; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016308. PubMed ID: 20866726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amyloid-Like Protein Aggregation Toward Pesticide Reduction.
    Su H; Liu Y; Gao Y; Fu C; Li C; Qin R; Liang L; Yang P
    Adv Sci (Weinh); 2022 May; 9(13):e2105106. PubMed ID: 35257513
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simple, Effective, and Ecofriendly Strategy to Inhibit Droplet Bouncing on Hydrophobic Weed Leaves.
    Ma Y; Gao Y; Zhao K; Zhang H; Li Z; Du F; Hu J
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50126-50134. PubMed ID: 33090773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of fluorescent tracers on droplet spectrum, viscosity, and density of pesticide formulations.
    Schleier JJ; Preftakes C; Peterson RK
    J Environ Sci Health B; 2010 Oct; 45(7):621-5. PubMed ID: 20803365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.
    Shirtcliffe NJ; McHale G; Newton MI
    Langmuir; 2009 Dec; 25(24):14121-8. PubMed ID: 20560556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient.
    Zhang B; Lei Q; Wang Z; Zhang X
    Langmuir; 2016 Jan; 32(1):346-51. PubMed ID: 26669260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantification of physical (roughness) and chemical (dielectric constant) leaf surface properties relevant to wettability and adhesion.
    Nairn JJ; Forster WA; van Leeuwen RM
    Pest Manag Sci; 2011 Dec; 67(12):1562-70. PubMed ID: 21681916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy.
    Jiang Y; Yang Z; Xu X; Shen D; Jiang T; Xie B; Duan J
    Front Plant Sci; 2023; 14():1079703. PubMed ID: 36743480
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact Behaviors on Superhydrophobic Surfaces for Water Droplets of Asymmetric Double-Chain Quaternary Ammonium Surfactants.
    Li H; Cai Z; Wang Y
    Langmuir; 2020 Nov; 36(46):14113-14122. PubMed ID: 33166156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methods for evaluating leaf surface free energy and polarity having accounted for surface roughness.
    Nairn JJ; Forster WA
    Pest Manag Sci; 2017 Sep; 73(9):1854-1865. PubMed ID: 28195394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing droplet deposition through in-situ precipitation.
    Damak M; Hyder MN; Varanasi KK
    Nat Commun; 2016 Aug; 7():12560. PubMed ID: 27572948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of an impacting emulsion droplet.
    Damak M; de Ruiter J; Panat S; Varanasi KK
    Sci Adv; 2022 Mar; 8(11):eabl7160. PubMed ID: 35302841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energy Loss for Droplets Bouncing Off Superhydrophobic Surfaces.
    Thenarianto C; Koh XQ; Lin M; Jokinen V; Daniel D
    Langmuir; 2023 Feb; 39(8):3162-3167. PubMed ID: 36795493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.
    Delele MA; Nuyttens D; Duga AT; Ambaw A; Lebeau F; Nicolai BM; Verboven P
    Soft Matter; 2016 Sep; 12(34):7195-211. PubMed ID: 27501228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.
    Massinon M; De Cock N; Salah SO; Lebeau F
    Commun Agric Appl Biol Sci; 2015; 80(3):313-21. PubMed ID: 27141729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coacervate-Enhanced Deposition of Sprayed Pesticide on Hydrophobic/Superhydrophobic Abaxial Leaf Surfaces.
    Zhang L; Wang J; Fan Y; Wang Y
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300270. PubMed ID: 37078792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.
    Puente DW; Baur P
    Pest Manag Sci; 2011 Jul; 67(7):798-806. PubMed ID: 21413140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Droplet Impinging Behavior on Surfaces with Wettability Contrasts.
    Farshchian B; Pierce J; Beheshti MS; Park S; Kim N
    Microelectron Eng; 2018 Aug; 195():50-56. PubMed ID: 30270957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.