These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30351932)

  • 1. A Discrete Interaction Model/Quantum Mechanical Method for Simulating Plasmon-Enhanced Two-Photon Absorption.
    Hu Z; Jensen L
    J Chem Theory Comput; 2018 Nov; 14(11):5896-5903. PubMed ID: 30351932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption.
    Morton SM; Jensen L
    J Chem Phys; 2011 Oct; 135(13):134103. PubMed ID: 21992278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the near-field effect on molecular excited states using the discrete interaction model/quantum mechanical method.
    Ye H; Becca JC; Jensen L
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38174789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy.
    Payton JL; Morton SM; Moore JE; Jensen L
    J Chem Phys; 2012 Jun; 136(21):214103. PubMed ID: 22697526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.
    Hu Z; Chulhai DV; Jensen L
    J Chem Theory Comput; 2016 Dec; 12(12):5968-5978. PubMed ID: 27792337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles.
    Morton SM; Jensen L
    J Chem Phys; 2010 Aug; 133(7):074103. PubMed ID: 20726631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic circular dichroism of 310- and α-helix using a discrete interaction model/quantum mechanics method.
    Chulhai DV; Jensen L
    J Phys Chem A; 2015 May; 119(21):5218-23. PubMed ID: 25474537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models.
    Chulhai DV; Jensen L
    J Phys Chem A; 2014 Oct; 118(39):9069-79. PubMed ID: 24834959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy in solution.
    Becca JC; Chen X; Jensen L
    J Chem Phys; 2021 Jun; 154(22):224705. PubMed ID: 34241237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.
    Mullin J; Schatz GC
    J Phys Chem A; 2012 Mar; 116(8):1931-8. PubMed ID: 22283122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing.
    Zhang Y; May V
    J Chem Phys; 2015 Jun; 142(22):224702. PubMed ID: 26071722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating Third-Order Nonlinear Optical Properties Using Damped Cubic Response Theory within Time-Dependent Density Functional Theory.
    Hu Z; Autschbach J; Jensen L
    J Chem Theory Comput; 2016 Mar; 12(3):1294-304. PubMed ID: 26841327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.