These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30351932)

  • 41. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory.
    Nascimento DR; DePrince AE
    J Chem Phys; 2015 Dec; 143(21):214104. PubMed ID: 26646866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.
    Röhr MI; Petersen J; Wohlgemuth M; Bonačić-Koutecký V; Mitrić R
    Chemphyschem; 2013 May; 14(7):1377-86. PubMed ID: 23589486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles.
    Dey S; Zhou Y; Tian X; Jenkins JA; Chen O; Zou S; Zhao J
    Nanoscale; 2015 Apr; 7(15):6851-8. PubMed ID: 25806486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantum plasmons and intraband excitons in doped nanoparticles: Insights from quantum chemistry.
    Lau BTG; Berkelbach TC
    J Chem Phys; 2020 Jun; 152(22):224704. PubMed ID: 32534544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.
    Schmidt MK; Esteban R; González-Tudela A; Giedke G; Aizpurua J
    ACS Nano; 2016 Jun; 10(6):6291-8. PubMed ID: 27203727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-dependent Kohn-Sham electron dynamics coupled with nonequilibrium plasmonic response via atomistic electromagnetic model.
    Huang X; Zhang W; Liang W
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38828813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantum dynamical simulations of local field enhancement in metal nanoparticles.
    Negre CF; Perassi EM; Coronado EA; Sánchez CG
    J Phys Condens Matter; 2013 Mar; 25(12):125304. PubMed ID: 23449278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. First hyperpolarizability of para-aminoaniline induced by a variety of gold nano particles.
    Olsen ST; Mikkelsen KV
    Phys Chem Chem Phys; 2016 Sep; 18(35):24343-9. PubMed ID: 27535788
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantized pseudomodes for plasmonic cavity QED.
    Hughes S; Richter M; Knorr A
    Opt Lett; 2018 Apr; 43(8):1834-1837. PubMed ID: 29652376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of nanoparticles on the excitation energies of the photochromic dihydroazulene/vinylheptafulvene system.
    Hillers-Bendtsen AE; Hansen MH; Mikkelsen KV
    Phys Chem Chem Phys; 2019 Mar; 21(12):6689-6698. PubMed ID: 30855612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A generalized non-local optical response theory for plasmonic nanostructures.
    Mortensen NA; Raza S; Wubs M; Søndergaard T; Bozhevolnyi SI
    Nat Commun; 2014 May; 5():3809. PubMed ID: 24787630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system.
    Zhang K; Zhang H; Li C
    Phys Chem Chem Phys; 2015 May; 17(18):12051-5. PubMed ID: 25874280
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.
    Hu Z; Autschbach J; Jensen L
    J Chem Phys; 2014 Sep; 141(12):124305. PubMed ID: 25273435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics.
    Itoh T; Yamamoto YS; Ozaki Y
    Chem Soc Rev; 2017 Jul; 46(13):3904-3921. PubMed ID: 28653715
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers.
    Varas A; García-González P; García-Vidal FJ; Rubio A
    J Phys Chem Lett; 2015 May; 6(10):1891-8. PubMed ID: 26263265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-Time Description of the Electronic Dynamics for a Molecule Close to a Plasmonic Nanoparticle.
    Pipolo S; Corni S
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28774-28781. PubMed ID: 28035246
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.