These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30351932)

  • 61. Absorption properties of metal-semiconductor hybrid nanoparticles.
    Shaviv E; Schubert O; Alves-Santos M; Goldoni G; Di Felice R; Vallée F; Del Fatti N; Banin U; Sönnichsen C
    ACS Nano; 2011 Jun; 5(6):4712-9. PubMed ID: 21648441
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Point-by-point near-field optical energy deposition around plasmonic nanospheres in absorbing media.
    Harrison RK; Ben-Yakar A
    J Opt Soc Am A Opt Image Sci Vis; 2015 Aug; 32(8):1523-35. PubMed ID: 26367296
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites.
    Cox JD; Singh MR; Antón MA; Carreño F
    J Phys Condens Matter; 2013 Sep; 25(38):385302. PubMed ID: 23988724
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate.
    Guerrini M; Calzolari A; Varsano D; Corni S
    J Chem Theory Comput; 2019 May; 15(5):3197-3203. PubMed ID: 30986064
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular nanopolaritonics: cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control.
    Neuhauser D; Lopata K
    J Chem Phys; 2007 Oct; 127(15):154715. PubMed ID: 17949199
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nonlinear response of metal nanoparticles: Double plasmon excitation and electron transfer.
    Gao S
    J Chem Phys; 2015 Jun; 142(23):234701. PubMed ID: 26093567
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle.
    Varguet H; Rousseaux B; Dzsotjan D; Jauslin HR; Guérin S; Colas des Francs G
    Opt Lett; 2016 Oct; 41(19):4480-4483. PubMed ID: 27749860
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Strong Coupling between Localized Surface Plasmons and Molecules by Coupled Cluster Theory.
    Fregoni J; Haugland TS; Pipolo S; Giovannini T; Koch H; Corni S
    Nano Lett; 2021 Aug; 21(15):6664-6670. PubMed ID: 34283614
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime.
    Chen X; Moore JE; Zekarias M; Jensen L
    Nat Commun; 2015 Nov; 6():8921. PubMed ID: 26555179
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Theory of plasmon enhanced interfacial electron transfer.
    Wang L; May V
    J Phys Condens Matter; 2015 Apr; 27(13):134209. PubMed ID: 25764984
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interaction of single quantum emitter and dark plasmon supported by a metal nanoring.
    Deinega A; Seideman T
    J Chem Phys; 2014 Jun; 140(23):234311. PubMed ID: 24952545
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantum tomography of the photon-plasmon conversion process in a metal hole array.
    Tang L; Zheng K; Guo J; Ouyang Y; Wu Y; Xia C; Li L; Liu F; Zhang Y; Zhang L; Xiao M
    Opt Express; 2019 May; 27(10):13809-13819. PubMed ID: 31163840
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.
    Kohlgraf-Owens DC; Kik PG
    Opt Express; 2009 Aug; 17(17):15032-42. PubMed ID: 19687981
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plasmons: untangling the classical, experimental, and quantum mechanical definitions.
    Gieseking RLM
    Mater Horiz; 2022 Jan; 9(1):25-42. PubMed ID: 34608479
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles.
    Han F; Guan Z; Tan TS; Xu QH
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4746-51. PubMed ID: 22891672
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Facile SILAR approach to air-stable naked silver and gold nanoparticles supported by alumina.
    Stamplecoskie KG; Manser JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17489-95. PubMed ID: 25243827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.