BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 30352003)

  • 1. The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification.
    Narduzzi L; Stanstrup J; Mattivi F; Franceschi P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov; 35(11):2145-2157. PubMed ID: 30352003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra.
    Jaeger C; Méret M; Schmitt CA; Lisec J
    Rapid Commun Mass Spectrom; 2017 Aug; 31(15):1261-1266. PubMed ID: 28499062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber.
    Touriño S; Fuguet E; Jáuregui O; Saura-Calixto F; Cascante M; Torres JL
    Rapid Commun Mass Spectrom; 2008 Nov; 22(22):3489-500. PubMed ID: 18853405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid chromatography-quadrupole time of flight tandem mass spectrometry-based targeted metabolomic study for varietal discrimination of grapes according to plant sterols content.
    Millán L; Sampedro MC; Sánchez A; Delporte C; Van Antwerpen P; Goicolea MA; Barrio RJ
    J Chromatogr A; 2016 Jul; 1454():67-77. PubMed ID: 27268521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a semi-automated strategy for the annotation of metabolomic fingerprints generated by liquid chromatography-high resolution mass spectrometry from biological samples.
    Courant F; Royer AL; Chéreau S; Morvan ML; Monteau F; Antignac JP; Le Bizec B
    Analyst; 2012 Nov; 137(21):4958-67. PubMed ID: 22970429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods.
    Berisha A; Dold S; Guenther S; Desbenoit N; Takats Z; Spengler B; Römpp A
    Rapid Commun Mass Spectrom; 2014 Aug; 28(16):1779-91. PubMed ID: 25559448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annotation of metabolites from gas chromatography/atmospheric pressure chemical ionization tandem mass spectrometry data using an in silico generated compound database and MetFrag.
    Ruttkies C; Strehmel N; Scheel D; Neumann S
    Rapid Commun Mass Spectrom; 2015 Aug; 29(16):1521-9. PubMed ID: 26212167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics.
    Samaraweera MA; Hall LM; Hill DW; Grant DF
    Anal Chem; 2018 Nov; 90(21):12752-12760. PubMed ID: 30350614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MetFusion: integration of compound identification strategies.
    Gerlich M; Neumann S
    J Mass Spectrom; 2013 Mar; 48(3):291-8. PubMed ID: 23494783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. compMS2Miner: An Automatable Metabolite Identification, Visualization, and Data-Sharing R Package for High-Resolution LC-MS Data Sets.
    Edmands WM; Petrick L; Barupal DK; Scalbert A; Wilson MJ; Wickliffe JK; Rappaport SM
    Anal Chem; 2017 Apr; 89(7):3919-3928. PubMed ID: 28225587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules].
    Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G
    Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MetExpert: An expert system to enhance gas chromatography‒mass spectrometry-based metabolite identifications.
    Qiu F; Lei Z; Sumner LW
    Anal Chim Acta; 2018 Dec; 1037():316-326. PubMed ID: 30292308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS.
    Hu M; Müller E; Schymanski EL; Ruttkies C; Schulze T; Brack W; Krauss M
    Anal Bioanal Chem; 2018 Mar; 410(7):1931-1941. PubMed ID: 29380019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds.
    Goryński K; Bojko B; Nowaczyk A; Buciński A; Pawliszyn J; Kaliszan R
    Anal Chim Acta; 2013 Oct; 797():13-9. PubMed ID: 24050665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention Index Prediction Using Quantitative Structure-Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics.
    Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR
    Anal Chem; 2018 Aug; 90(15):9434-9440. PubMed ID: 29952550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry.
    Tsutsui H; Maeda T; Min JZ; Inagaki S; Higashi T; Kagawa Y; Toyo'oka T
    Clin Chim Acta; 2011 May; 412(11-12):861-72. PubMed ID: 21185819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics.
    Bonini P; Kind T; Tsugawa H; Barupal DK; Fiehn O
    Anal Chem; 2020 Jun; 92(11):7515-7522. PubMed ID: 32390414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling monoterpenol glycoconjugation in Vitis vinifera L. cv. Muscat of Alexandria using a novel putative compound database approach, high resolution mass spectrometry and collision induced dissociation fragmentation analysis.
    Hjelmeland AK; Zweigenbaum J; Ebeler SE
    Anal Chim Acta; 2015 Aug; 887():138-147. PubMed ID: 26320795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced metabolite annotation via dynamic retention time prediction: Steroidogenesis alterations as a case study.
    Randazzo GM; Tonoli D; Strajhar P; Xenarios I; Odermatt A; Boccard J; Rudaz S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Dec; 1071():11-18. PubMed ID: 28479067
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 30.