These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30352160)

  • 1. Cyclopropenium Enhanced Thiourea Catalysis.
    Smajlagic I; Durán R; Pilkington M; Dudding T
    J Org Chem; 2018 Nov; 83(22):13973-13980. PubMed ID: 30352160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis.
    Smajlagic I; Guest M; Durán R; Herrera B; Dudding T
    J Org Chem; 2020 Jan; 85(2):585-593. PubMed ID: 31790584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclopropenium Ions in Catalysis.
    Wilson RM; Lambert TH
    Acc Chem Res; 2022 Oct; 55(20):3057-3069. PubMed ID: 36170613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study on the Synergic Effect of Brønsted Acid and Hydrogen-Bonding Catalysis for the Dearomatization Reaction of Phenols with Diazo Functionality.
    Yanagawa M; Kobayashi M; Ikeda M; Harada S; Nemoto T
    Chem Pharm Bull (Tokyo); 2020; 68(11):1104-1108. PubMed ID: 33132378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative thiourea-Brønsted acid organocatalysis: enantioselective cyanosilylation of aldehydes with TMSCN.
    Zhang Z; Lippert KM; Hausmann H; Kotke M; Schreiner PR
    J Org Chem; 2011 Dec; 76(23):9764-76. PubMed ID: 22011108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative catalysis by tertiary amino-thioureas: mechanism and basis for enantioselectivity of ketone cyanosilylation.
    Zuend SJ; Jacobsen EN
    J Am Chem Soc; 2007 Dec; 129(51):15872-83. PubMed ID: 18052247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C-C bond formation.
    Hamza A; Schubert G; Soós T; Papai I
    J Am Chem Soc; 2006 Oct; 128(40):13151-60. PubMed ID: 17017795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultra-low thiourea catalyzed strain-release glycosylation and a multicatalytic diversification strategy.
    Xu C; Loh CCJ
    Nat Commun; 2018 Oct; 9(1):4057. PubMed ID: 30282986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology.
    Peng P; Schmidt RR
    Acc Chem Res; 2017 May; 50(5):1171-1183. PubMed ID: 28440624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions.
    Levi SM; Li Q; Rötheli AR; Jacobsen EN
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):35-39. PubMed ID: 30559190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitro-Assisted Brønsted Acid Catalysis: Application to a Challenging Catalytic Azidation.
    Dryzhakov M; Hellal M; Wolf E; Falk FC; Moran J
    J Am Chem Soc; 2015 Aug; 137(30):9555-8. PubMed ID: 26196521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold(I)-Mediated Thiourea Organocatalyst Activation: A Synergic Effect for Asymmetric Catalysis.
    Izaga A; Herrera RP; Gimeno MC
    ChemCatChem; 2017 Apr; 9(7):1313-1321. PubMed ID: 28706568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organocatalytic asymmetric nitroaldol reaction: cooperative effects of guanidine and thiourea functional groups.
    Sohtome Y; Takemura N; Takada K; Takagi R; Iguchi T; Nagasawa K
    Chem Asian J; 2007 Sep; 2(9):1150-60. PubMed ID: 17638377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brønsted acid catalyzed Morita-Baylis-Hillman reaction: a new mechanistic view for thioureas revealed by ESI-MS(/MS) monitoring and DFT calculations.
    Amarante GW; Benassi M; Milagre HM; Braga AA; Maseras F; Eberlin MN; Coelho F
    Chemistry; 2009 Nov; 15(45):12460-9. PubMed ID: 19813234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in the organocatalytic applications of cyclopropene- and cyclopropenium-based small molecules.
    Ranga PK; Ahmad F; Singh G; Tyagi A; Vijaya Anand R
    Org Biomol Chem; 2021 Nov; 19(44):9541-9564. PubMed ID: 34704583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct N-Glycofunctionalization of Amides with Glycosyl Trichloroacetimidate by Thiourea/Halogen Bond Donor Co-Catalysis.
    Kobayashi Y; Nakatsuji Y; Li S; Tsuzuki S; Takemoto Y
    Angew Chem Int Ed Engl; 2018 Mar; 57(14):3646-3650. PubMed ID: 29412493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cinchona-Based Hydrogen-Bond Donor Organocatalyst Metal Complexes: Asymmetric Catalysis and Structure Determination.
    Nagy S; Richter D; Dargó G; Orbán B; Gémes G; Höltzl T; Garádi Z; Fehér Z; Kupai J
    ChemistryOpen; 2024 Apr; 13(4):e202300180. PubMed ID: 38189585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Insights into the Central Role of Nonbonding Interactions in Modern Covalent Organocatalysis.
    Walden DM; Ogba OM; Johnston RC; Cheong PH
    Acc Chem Res; 2016 Jun; 49(6):1279-91. PubMed ID: 27267964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bis(amino)cyclopropenium Ion as a Hydrogen-Bond Donor Catalyst for 1,6-Conjugate Addition Reactions.
    Ranga PK; Ahmad F; Nager P; Rana PS; Vijaya Anand R
    J Org Chem; 2021 Apr; 86(7):4994-5010. PubMed ID: 33721500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organophotocatalysis: Insights into the Mechanistic Aspects of Thiourea-Mediated Intermolecular [2+2] Photocycloadditions.
    Vallavoju N; Selvakumar S; Pemberton BC; Jockusch S; Sibi MP; Sivaguru J
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5446-51. PubMed ID: 27005562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.