These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30352162)

  • 1. Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts.
    Quiroz J; Barbosa ECM; Araujo TP; Fiorio JL; Wang YC; Zou YC; Mou T; Alves TV; de Oliveira DC; Wang B; Haigh SJ; Rossi LM; Camargo PHC
    Nano Lett; 2018 Nov; 18(11):7289-7297. PubMed ID: 30352162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Selectivity in Plasmonic Catalysis: Switching Reaction Pathway from Hydrogenation to Homocoupling Under Visible-Light Irradiation.
    Peiris E; Hanauer S; Le T; Wang J; Salavati-Fard T; Brasseur P; Formo EV; Wang B; Camargo PHC
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202216398. PubMed ID: 36417579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination.
    Peiris E; Hanauer S; Knapas K; Camargo PHC
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic catalysis with designer nanoparticles.
    da Silva AGM; Rodrigues TS; Wang J; Camargo PHC
    Chem Commun (Camb); 2022 Feb; 58(13):2055-2074. PubMed ID: 35044391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction Pathway Dependence in Plasmonic Catalysis: Hydrogenation as a Model Molecular Transformation.
    Barbosa ECM; Fiorio JL; Mou T; Wang B; Rossi LM; Camargo PHC
    Chemistry; 2018 Aug; 24(47):12330-12339. PubMed ID: 29365214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis.
    Aslam U; Chavez S; Linic S
    Nat Nanotechnol; 2017 Oct; 12(10):1000-1005. PubMed ID: 28737751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple Play of Band Gap, Interband, and Plasmonic Excitations for Enhanced Catalytic Activity in Pd/H
    Bezerra LS; Belhout SA; Wang S; Quiroz J; de Oliveira PFM; Shetty S; Rocha G; Santos HLS; Frindy S; Oropeza FE; de la Peña O'Shea VA; Kallio AJ; Huotari S; Huo W; Camargo PHC
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11467-11478. PubMed ID: 38382920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au@C/Pt core@shell/satellite supra-nanostructures: plasmonic antenna-reactor hybrid nanocatalysts.
    Wang Z; Wang H
    Nanoscale Adv; 2023 Oct; 5(20):5435-5448. PubMed ID: 37822901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized Orbital Excitation Drives Bond Formation in Plasmonic Catalysis.
    Mou T; Quiroz J; Camargo PHC; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60115-60124. PubMed ID: 34874713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis.
    Elias RC; Linic S
    J Am Chem Soc; 2022 Nov; 144(43):19990-19998. PubMed ID: 36279510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled gold-palladium cores in ceria hollow spheres as nanoreactor for plasmon-enhanced catalysis under visible light irradiation.
    Zhao X; Wang S; Yang K; Yang X; Liu X
    J Colloid Interface Sci; 2023 Mar; 633():11-23. PubMed ID: 36427425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design-controlled synthesis of IrO
    de Freitas IC; Parreira LS; Barbosa ECM; Novaes BA; Mou T; Alves TV; Quiroz J; Wang YC; Slater TJ; Thomas A; Wang B; Haigh SJ; Camargo PHC
    Nanoscale; 2020 Jun; 12(23):12281-12291. PubMed ID: 32319490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-rich plasmonic nanorattles with enhanced LSPRs
    Ivanchenko M; Evangelista AJ; Jing H
    RSC Adv; 2021 Dec; 11(63):40112-40119. PubMed ID: 35494128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling Plasmonic and Cocatalyst Nanoparticles on N⁻TiO₂ for Visible-Light-Driven Catalytic Organic Synthesis.
    Wang Y; Chen Y; Hou Q; Ju M; Li W
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30866493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supported Pt Nanoparticles on Mesoporous Titania for Selective Hydrogenation of Phenylacetylene.
    Hu M; Jin L; Dang Y; Suib SL; He J; Liu B
    Front Chem; 2020; 8():581512. PubMed ID: 33330371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOF Encapsulated AuPt Bimetallic Nanoparticles for Improved Plasmonic-induced Photothermal Catalysis of CO
    Wang Y; Zhang X; Chang K; Zhao Z; Huang J; Kuang Q
    Chemistry; 2022 Mar; 28(16):e202104514. PubMed ID: 35118722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow Catalytic Loading for Optimised Electrocatalytic Performance of AuPt Nanoparticles to Produce Hydrogen and Ammonia.
    Bezerra LS; Brasseur P; Sullivan-Allsop S; Cai R; da Silva KN; Wang S; Singh H; Yadav AK; Santos HLS; Chundak M; Abdelsalam I; Heczko VJ; Sitta E; Ritala M; Huo W; Slater TJA; Haigh SJ; Camargo PHC
    Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405459. PubMed ID: 38711309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.